Example 1. Let ξ be a primitive 7th root of 1. Then $Aut_{\mathbf{Q}}(\mathbf{Q}(\xi)) \cong (\mathbf{Z}/7\mathbf{Z})^*$, a cyclic group of 6 elements.

Sol: Fix $\xi = e^{2\pi i/7}$, a primitive 7th root of 1. The polynomial $x^7 - 1$ factors as $x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$ and ξ is a zero of the irreducible factor $f(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. Hence f is the minimum polynomial of ξ and the field $\mathbf{Q}(\xi)$ is a degree 6 extension of \mathbf{Q} .

One has

 $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\xi)) = \operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\xi), \mathbf{Q}(\xi)),$

and the above set is in 1-1 correspondence with the zeros of $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ contained in $\mathbf{Q}(\xi)$

$$Z(f) \cap \mathbf{Q}(\xi) = \{\xi, \ \xi^2, \ \xi^3, \ \xi^4, \ \xi^5, \ \xi^6\}.$$

To each zero, there corresponds an element of $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\xi))$, determined by $\phi_j(\xi) = \xi^j$, for $j = 1, \ldots, 6$. The identity automorphism corresponds to j = 1. More precisely, there is a group isomorphism

$$\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\xi)) \to (\mathbf{Z}/7\mathbf{Z})^*, \quad \phi_j \mapsto j.$$

The group $(\mathbf{Z}/7\mathbf{Z})^*$ is cyclic group of order 6: it contains as subgroup $G = \{Id, \phi_6\} \cong \mathbf{Z}/2\mathbf{Z}$ and a subgroup $H = \{Id, \phi_4, \phi_4 \circ \phi_4\} \cong \mathbf{Z}/3\mathbf{Z}$.

Now we compute the fixed subfields of the groups G and H.

• $\mathbf{Q}(\xi)^G$:

As #G = 2, one has $[\mathbf{Q}(\xi) : \mathbf{Q}(\xi)^G] = 2$ and therefore $[\mathbf{Q}(\xi)^G : \mathbf{Q}] = 3$. Observe that $\phi_6(\xi) = \xi^6 = \overline{\xi}$. Then for $\alpha = \xi + \overline{\xi} = 2\cos(2\pi/7)$, we have inclusions $\mathbf{Q} \subset \mathbf{Q}(\alpha) \subset \mathbf{Q}(\xi)^G$.

Since $\alpha \notin \mathbf{Q}$ and the degree $[\mathbf{Q}(\alpha) : \mathbf{Q}]$ divides the degree $[\mathbf{Q}(\xi)^G : \mathbf{Q}]$, then necessarily $[\mathbf{Q}(\alpha) : \mathbf{Q}] = 3$ and $\mathbf{Q}(\alpha) = \mathbf{Q}(\xi)^G$.

With the same reasoning, one obtains $\mathbf{Q}(\xi)^G = \mathbf{Q}(\beta) = \mathbf{Q}(\gamma)$, for $\beta = \xi^2 + \overline{\xi}^2$ and $\gamma = \xi^3 + \overline{\xi}^3$:

• $\mathbf{Q}(\xi)^H$:

As #G = 3, one has $[\mathbf{Q}(\xi) : \mathbf{Q}(\xi)^G] = 3$ and therefore $[\mathbf{Q}(\xi)^G : \mathbf{Q}] = 2$.

Excercise. (a) Check that $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ is irreducible over **Q**. (use the substitution x = y + 1 etc...)

(b) Exhibit a basis of the **Q**-vector space $\mathbf{Q}(\xi)$.