• $\mathbf{F} \subset \mathbf{E}$ finite field extension; $\operatorname{Aut}_{\mathbf{F}}(\mathbf{E})$ the group of \mathbf{F} -field homomorphisms.

• Let G be a subgroup of $\operatorname{Aut}_{\mathbf{F}}(\mathbf{E})$. Denote by $\mathbf{E}^G = \{x \in \mathbf{E} \mid \phi(x) = x, \forall \phi \in G\}$ the subset of invariant elements. Then \mathbf{E}^G is a subfield of E (Exercise).

The next two theorems estimate the cardinality of $\operatorname{Aut}_{\mathbf{F}}(\mathbf{E})$ both from above and from below.

Theorem 1. (Milne, Thm.3.2) (a) $\mathbf{F} \subset \mathbf{E}$ finite field extension. Then $\#Aut_{\mathbf{F}}(\mathbf{E}) \leq [\mathbf{E} : \mathbf{F}]$; (b) If $\mathbf{E} = \mathbf{F}_f$ is the splitting field of a separable polynomial $f \in \mathbf{F}[x]$, then $\#Aut_{\mathbf{F}}(\mathbf{E}) = [\mathbf{E} : \mathbf{F}]$

Theorem 2. (Artin's Lemma) (Milne, Thm.3.4) Let \mathbf{E} be a field, and let G be a finite subgroup of $Aut(\mathbf{E})$. Then $\#G \ge [\mathbf{E} : \mathbf{E}^G]$.