Example 1. Let \mathbf{Q}_f be the splitting field of the polynomial $f(x) = x^3 - 2$. Then $Aut_{\mathbf{Q}}(\mathbf{Q}_f) \cong S_3$, the permutation group of 3 elements.

Sol: Recall that $\mathbf{Q}_f = \mathbf{Q}(\sqrt[3]{2},\xi)$, where ξ is a 3^{rd} primitive root of 1, and that $[\mathbf{Q}_f: \mathbf{Q}] = [\mathbf{Q}(\sqrt[3]{2}): \mathbf{Q}][\mathbf{Q}(\sqrt[3]{2})(\xi): \mathbf{Q}(\sqrt[3]{2})] = 6$. Recall also that $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f) \subset S_3$. We first show that $\#\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f) = 6$ by exhibiting an element ϕ of order 3 and an element ψ of order 2 in $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f)$. Then from the conditions $\#\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f) \leq 6$, 2, 3 | $\#\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f)$ it follows that $\#\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f) = 6$. Since $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f) \subset S_3$, we conclude that $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f) \cong S_3$.

Consider the extensions $\mathbf{Q} \subset \mathbf{Q}(\xi) \subset \mathbf{Q}_f$ and the subgroup $\operatorname{Aut}_{\mathbf{Q}(\xi)}(\mathbf{Q}_f) \subset \operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f)$ consisting of the automorphisms of \mathbf{Q}_f , fixing $\mathbf{Q}(\xi)$. We have

$$\operatorname{Aut}_{\mathbf{Q}(\xi)}(\mathbf{Q}_f) = \operatorname{Hom}_{\mathbf{Q}(\xi)}(\mathbf{Q}_f, \mathbf{Q}_f)$$

and the above set is in 1-1 correspondence with

$$Z(x^2 - 2) \cap \mathbf{Q}_f = \{\sqrt[3]{2}, \sqrt[3]{2}\xi, \sqrt[3]{2}\xi^2\}.$$

The automorphism determined by the condition $\phi(\sqrt[3]{2}) = \sqrt[3]{2}\xi$ is an element of order 3 of $\operatorname{Aut}_{\mathbf{Q}(\xi)}(\mathbf{Q}_f)$ and therefore of $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f)$.

Consider now the extensions $\mathbf{Q} \subset \mathbf{Q}(\sqrt[3]{2}) \subset \mathbf{Q}_f$ and the subgroup $\operatorname{Aut}_{\mathbf{Q}(\sqrt[3]{2})}(\mathbf{Q}_f)$ of $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f)$ consisting of the automorphisms of \mathbf{Q}_f , fixing $\mathbf{Q}(\sqrt[3]{2})$. We have

$$\operatorname{Aut}_{\mathbf{Q}(\sqrt[3]{2})}(\mathbf{Q}_f) = \operatorname{Hom}_{\mathbf{Q}(\sqrt[3]{2})}(\mathbf{Q}_f, \mathbf{Q}_f)$$

and the above set is in 1-1 correspondence with

$$Z(x^2 + x + 1) \cap \mathbf{Q}_f = \{\xi, \xi^2\}.$$

The automorphism determined by the condition $\psi(\xi) = \xi^2$ is an element of order 2 of $\operatorname{Aut}_{\mathbf{Q}(\sqrt[3]{2})}(\mathbf{Q}_f)$ and therefore of $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}_f)$.

One can also proceed as follows. Consider the extensions $\mathbf{Q} \subset \mathbf{Q}(\xi) \subset \mathbf{Q}_f$. Aut $_{\mathbf{Q}}(\mathbf{Q}(\xi))$ consists of two elements: the identity and the automorphism of order 2 determined by $\phi(\xi) = \xi^2$. The cardinality of

$$\operatorname{Aut}_{\mathbf{Q}(\xi)}(\mathbf{Q}(\sqrt[3]{2},\xi)) = \operatorname{Hom}_{\mathbf{Q}(\xi)}(\mathbf{Q}(\sqrt[3]{2},\xi),\mathbf{Q}(\sqrt[3]{2},\xi))$$

tells in how many ways an element $\phi \in \operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\xi))$ can be extended to an automorphism in $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\sqrt[3]{2},\xi))$. Such cardinality is equal to 3, as $x^3 - 2$ is the minimum polynomial of $\sqrt[3]{2}$ over $\mathbf{Q}(\xi)$. The polynomial $x^3 - 2$ is indeed it is irreducible over $\mathbf{Q}(\xi)$, because otherwise it would define a degree 3 extension of \mathbf{Q} inside $\mathbf{Q}(\xi)$. Absurd.

Excercise Determine all automorphisms $\phi \in \operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\sqrt[3]{2},\xi))$ specifying the images of each element of the **Q**-basis of $\mathbf{Q}(\sqrt[3]{2},\xi)$ given by $1,\xi,\sqrt[3]{2},(\sqrt[3]{2})^2,\sqrt[3]{2}\xi,(\sqrt[3]{2})^2\xi$.

Example 2. Let ξ be a primitive 8^{th} root of 1. Then $Aut_{\mathbf{Q}}(\mathbf{Q}(\xi)) \cong V_4$, the Klein group with 4 elements.

Sol.: Set $\xi = e^{2\pi i/8} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$. The field $\mathbf{Q}(\xi)$ is a degree 4 extension of \mathbf{Q} : the polynomial $x^8 - 1$ factors as $x^8 - 1 = (x^4 + 1)(x^2 + 1)(x + 1)(x - 1)$ and ξ is a zero of the irreducible factor $f(x) = x^4 + 1$, which is its minimum polynomial. One has

 $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\xi)) = \operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\xi), \mathbf{Q}(\xi)),$

and the above set is in 1-1 correspondence with

$$Z(x^4+1) \cap \mathbf{Q}(\xi) = \{\xi, \ \xi^3, \ \xi^5, \ \xi^7\},$$

which are the zeros of $x^4 + 1$ contained in $\mathbf{Q}(\xi)$. To each zero, there corresponds an element of $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\xi))$, determined by

 $\phi_1(\xi) = \xi$ (the identity automorphism),

 $\phi_3(\xi) = \xi^3,$ $\phi_5(\xi) = \xi^5,$

 $\phi_7(\xi) = \xi^7$, respectively.

All the above automorphisms, different from the identity, have order 2: as they are completely determined by the image of ξ , it is sufficient to verify that $\phi_i \circ \phi_i = Id$, for i = 3, 5, 7. Indeed, using the relation $\xi^8 = 1$, we find

$$\begin{aligned} \phi_3(\phi_3(\xi)) &= \phi_3(\xi^3)) = \xi^9 = \xi, \\ \phi_5(\phi_5(\xi)) &= \phi_5(\xi^5)) = \xi^{25} = \xi, \\ \phi_7(\phi_7(\xi)) &= \phi_7(\xi^7)) = \xi^{49} = \xi. \end{aligned}$$

It follows that as a group $\operatorname{Aut}_{\mathbf{Q}}(\mathbf{Q}(\xi))$ is isomorphic to the Klein group with 4 elements V_4 . In particular it contains 3 subgroups with 2 elements, generated by ϕ_3, ϕ_5, ϕ_7 , respectively.

Remark. (a) The field $\mathbf{Q}(\xi)$ contains $\mathbf{Q}(\sqrt{2})$ as a subfield. It is obtained as

$$\mathbf{Q}(\sqrt{2}) = \mathbf{Q}(\xi + \xi^7) = \mathbf{Q}(\xi^3 + \xi^5)$$

(b) One can verify that the subfield $\mathbf{Q}(\sqrt{2})$ is the fixed subfield of the subgroup generated by $\phi_7(\xi) = \xi^7 = \overline{\xi}$.

(c) Consider now the subgroup generated by ϕ_3 and compute its fixed subfield:

(c) Consider now backgroup generated by φ_3 and compute its information let $Z = x + y\xi + z\xi^2 + u\xi^3$, with $x, y, z, u \in \mathbf{Q}$, be an element in $\mathbf{Q}(\xi)$. One has $\phi_3(x + y\xi + z\xi^2 + u\xi^3) = x + y\xi^3 + z\xi^6 + u\xi^9 = x + u\xi - z\xi^2 + y\xi^3$. Hence $\phi_3(Z) = Z$ if an only if y = u and z = 0. in other words $Z = x + y(\xi + \xi^3) =$ $x + i\sqrt{2}y \in \mathbf{Q}(i\sqrt{2}).$

(d) Consider now the subgroup generated by ϕ_5 and compute its fixed subfield: $\phi_5(Z) = Z$ if an only if y = u = 0 and $Z = x + z\xi^2 = x + iz \in \mathbf{Q}(i)$. Conclusion: $\mathbf{Q}(\xi)$ contains 3 quadratic subfields

$$\mathbf{Q} \subset \mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\xi), \quad \mathbf{Q} \subset \mathbf{Q}(i\sqrt{2}) \subset \mathbf{Q}(\xi), \quad \mathbf{Q} \subset \mathbf{Q}(i) \subset \mathbf{Q}(\xi).$$

Excercise. (a) Check that $X^4 + 1$ is irreducible over **Q**.

(b) Exhibit a basis of the **Q**-vector space $\mathbf{Q}(\xi)$.

(c) In that basis, determine the representative matrix of $\phi_3: \mathbf{Q}(\xi) \to \mathbf{Q}(\xi)$, viewed as a **Q**-linear map.

(d) What does the automorphism ϕ_5 do on the subfield $\mathbf{Q}(\sqrt{2})$?