• Defined the *characteristic* of a field \mathbf{F} . The characteristic of a field is either equal to 0 or to a prime p.

• Examples of fields of characteristic 0: \mathbf{Q} , \mathbf{R} , \mathbf{C} , $\mathbf{Q}(\alpha)$, ... Every field of characteristic 0 contains a copy of \mathbf{Q} .

• Examples of of fields of characteristic p: the field of p elements $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$, the field of p^n elements $\mathbf{F}_{p^n} \cong \mathbf{F}_p[x]/(f)$, where f is an irreducible polynomial of degree n in $\mathbf{F}_p[x]$. Every field of characteristic p contains a copy of $\mathbf{Z}/p\mathbf{Z}$.

Definition. A field **F** is perfect if either $char(\mathbf{F}) = 0$ or $char(\mathbf{F}) = p$ and $\mathbf{F}^p = \mathbf{F}$.

- Examples of perfect fields: $\mathbf{Q}, \mathbf{R}, \mathbf{C}, \mathbf{Q}(\alpha), \mathbf{F}_p, \mathbf{F}_{p^n}$.
- Examples of *non*-perfect fields: $\mathbf{F} = \mathbf{F}_p(T)$.

Recall that a polynomial is *separable* if it has distinct zeros in any splitting field.

Proposition (Milne, Prop 2.12) Let **F** be a field and let $f \in \mathbf{F}[x]$ be an irreducible polynomial. Then

(a) If $char(\mathbf{F}) = 0$, then f is separable;

(b) If $char(\mathbf{F}) = p$, then there exists an irreducible separable polynomial $g \in \mathbf{F}[x]$ such that $f(x) = g(x^{p^e})$, for some $e \in \mathbb{Z}_{\geq 1}$; (c) If \mathbf{F} is perfect, then f is separable.

Let $\mathbf{F} \subset \mathbf{E}$ be a field extension.

 $\operatorname{Aut}_{\mathbf{F}}(\mathbf{E}) = \{ \phi \colon \mathbf{E} \to \mathbf{E}, \ \mathbf{F} \text{-field isomorphisms} \}.$

If the extension has finite degree $[\mathbf{E}:\mathbf{F}] < \infty$, then $\operatorname{Aut}_{\mathbf{F}}(\mathbf{E}) = \operatorname{Hom}_{\mathbf{F}}(E, E)$.