Concluded the proof of Proposition 2.7, in Milne:

Proposition 2.7(b) Let **F** be a field, let $f \in \mathbf{F}[x]$ be a polynomial. If **K** and **K'** are splitting fields of f over **F**, then there exists a field **F**-isomorphism $\phi \colon \mathbf{K} \to \mathbf{K'}$.

Definition. Let **F** be a field. A polynomial $f \in \mathbf{F}[x]$ is called separable if in a splitting field of f the zeroes of f are distinct.

Examples:

(a) $f(x) = x(x-1) \in \mathbf{Q}[x]$ is separable;

(b) $f(x) = (x-1)^2 \in \mathbf{Q}[x]$ is not separable;

(c) $f(x) = x^2 + 1 \in \mathbf{R}[x]$ is separable: the splitting field of f is $\mathbf{R}_f = \mathbf{C}$ and there f has distinct zeros $\pm i$.

(d) $f(x) = x^2 + 1 = (x + 1)^2 \in \mathbb{Z}/2\mathbb{Z}[x]$ is not separable.

Definition. Let **F** be a field. The derivative of a polynomial $f(x) = \sum_{n=0}^{d} a_n x^n$ in **F**[x] is defined as follows

$$f'(x) = \sum_{n=1}^d na_n x^{n-1}.$$

(here n = 1 + ... + 1, where $1 \in \mathbf{F}$ and nx = x + ... + x).

Excercise. The derivative defined above is linear and satisfies the Leibnitz rule.

Proposition. (Prop.2.13, Milne) Let **F** be a field. A polynomial $f \in \mathbf{F}[x]$ is separable if and only if gcd(f, f') = 1.