NAProject 2018.  Module 2.  Lecture 4. Examples.

Example 1. Compute the cardinality of Homq(Q(~+/2),F), where F = Q, R, C.

Sol.: The minimal polynomial of /2 over Q is f(z) = 2% — 2.
Its zeroes are Z(f) = {v/2, —v/2, v/2i, —+/2i}.

(a) #Homq(Q(V/2), Q) = 0.

Since f has no zeroes in Q, there are no Q-homomorphisms ¢: Q(v/2) — Q.
Another way to argue: since dimgq Q(v/2) = 4, dimq Q = 1 and every field homo-
morphism is necessarily injective, there are no Q-homomorphisms ¢: Q(+v/2) — Q.

(b) #Homq(Q(v/2),R) = 2.

The polynomial f has 2 zeroes in R, namely v/2, —+/2. Hence there are two Q-
homomorphisms ¢1, ¢2: Q(v/2) — R, determined by

¢1(v/2) = /2 and ¢2(V/2) = —+/2, respectively.

(c) #Homg(Q(v/2),C) = 4.

The polynomial f has 4 zeroes in C. Hence there are four Q-homomorphisms
¢17 ¢2, (253, ¢4Z Q(\Al/i) - C, determined by

¢1(\4/§) = \4/57 ¢2(\4/§) = _\4/57

#3(V/2) = V2, $4(¥/2) = —+/2i, respectively.

Example 2. Compute the cardinality of Homgq(Q(+/2,v/3), F), where F = Q, R, C.

Sol.:

(a) #HOIHQ(Q(\/E, \/g)’ Q) =0.

Consider the subfield Q(v/2) = Q(v/2,4/3). Since the minimal polynomial 22 — 2
of /2 over Q has no roots in Q, there are no Q-homomorphisms ¢: Q(v/2) — Q.
It follows that there are no Q-homomorphisms ¢: Q(v/2,v/3) — Q.

(b) #Homq(Q(vZ, V3),R) = 4.

There are two Q-homomorphisms ¢1, ¢2: Q(v/2) — Q, determined by

#1(v/2) = /2 and ¢2(V/2) = —+/2, respectively.

Now we extend them to Q(v/2,+/3), by viewing Q(v/2,v/3) = Q(v/2)(v/3). The
polynomial 22 — 3 is irreducible in Q(+/2)[x], hence it is the minimal polynomial of
V3 over Q(v/2). Its zeroes +£4/3 € R. Hence #Homq(ﬁ)(Q(ﬂ, v3),R) = 2. This
means that given a Q-homomorphism Q(+/2) — R, we can extend it to Q(v/2,/3)
in two ways, depending on whether 1/3 is mapped to v/3 or —v/3.

The four Q-homomorphisms ¢1, d2, ¢3, ¢4: Q(+v/2,4/3) — R are determined by

P (V2) = V2, 61(v3) =3,

$2(V2) = =2, ¢a2(v3) = V3,

$3(V2) = V2, ¢3(v/3) = —V/3,

6a(V2) = =2,  ¢4(+/3) = —/3, respectively.

(c) #Homq(Q(v2,v3),C) = 4.

As above.

Example 3. Compute the cardinality of Homq(Q(§),F), where § = e2m/5 js a

primitive 5" root of 1 and F = R, C.

Sol.: Observe that over Q the polynomial 2° — 1 decomposes as % — 1 = (x —
D (a* + 23 + 2% + x + 1), with 2* + 23 + 22 + x + 1 irreducible (see Milne, Lemma
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1.41). This shows that #* + 2% + 22 + 2 + 1 is the minimal polynomial of £ over Q.
Its roots in C are £, €2, €3, €%, none of which is real. One has £* = € and &3 = £2.

(a) from the above discussion, it follows that #Homg(Q(£),R) = 0.

(b) #Homq(Q(¢),C) = 4
There four homomorphisms ¢1, ¢, ¢, 42 Q(§) — C, determined by ¢1(§) = &,

¢2(£) = 527 ¢3(£) = 537 ¢4(§) = 547 respectively.

Example 4. Compute the cardinality of Homg /5 (Q(§), C), where § = e?m/5 s
a primitive 5" root of 1.

Sol.: Observe that Q(\/_g) is a subfield of Q(&): for this it is sufficient to check that
V5 =264+ = 2(¢6+€) € Q(V5). Over Q(v/5), the polynomial z + 23 + 22 +2+1
decomposes into two degree 2 irreducible factors
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where (22 — (Z4Y5) 2 1) = (2—&)(z—£) and (22 + (1255) 2 +1) = (2—£€2)(x—&2).
As a subfield of Q(€), the field Q(v/5) is obtained by adjoining ¢ + € = (=1£¥5) or
equivalently &2 + €2 = —(#) to Q:

QcQ(vV5) =Q(E+&) =QE+&) Q¢

For an automorphism in Homq(Q(§), C) to fix Q(v/5) it is necessary and sufficient
that either £ — & or £ — &.

Conclusion: #HomQ(\/g)(Q(é), C)=2.
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