
NAProject 2018. Module 2. Lecture 4. Examples.

Example 1. Compute the cardinality of HomQpQp
4
?

2q,Fq, where F “ Q,R,C.

Sol.: The minimal polynomial of 4
?

2 over Q is fpxq “ x4 ´ 2.
Its zeroes are Zpfq “ t 4

?
2,´ 4

?
2, 4
?

2i,´ 4
?

2iu.

(a) #HomQpQp
4
?

2q,Qq “ 0.

Since f has no zeroes in Q, there are no Q-homomorphisms φ : Qp 4
?

2q Ñ Q.
Another way to argue: since dimQ Qp 4

?
2q “ 4, dimQ Q “ 1 and every field homo-

morphism is necessarily injective, there are no Q-homomorphisms φ : Qp 4
?

2q Ñ Q.

(b) #HomQpQp
4
?

2q,Rq “ 2.

The polynomial f has 2 zeroes in R, namely 4
?

2,´ 4
?

2. Hence there are two Q-
homomorphisms φ1, φ2 : Qp 4

?
2q Ñ R, determined by

φ1p
4
?

2q “ 4
?

2 and φ2p
4
?

2q “ ´ 4
?

2, respectively.

(c) #HomQpQp
4
?

2q,Cq “ 4.

The polynomial f has 4 zeroes in C. Hence there are four Q-homomorphisms
φ1, φ2, φ3, φ4 : Qp 4

?
2q Ñ C, determined by

φ1p
4
?

2q “ 4
?

2, φ2p
4
?

2q “ ´ 4
?

2,
φ3p

4
?

2q “ 4
?

2i, φ4p
4
?

2q “ ´ 4
?

2i, respectively.

Example 2. Compute the cardinality of HomQpQp
?

2,
?

3q,Fq, where F “ Q,R,C.

Sol.:
(a) #HomQpQp

?
2,
?

3q,Qq “ 0.

Consider the subfield Qp
?

2q Ă Qp
?

2,
?

3q. Since the minimal polynomial x2 ´ 2
of
?

2 over Q has no roots in Q, there are no Q-homomorphisms φ : Qp
?

2q Ñ Q.
It follows that there are no Q-homomorphisms φ : Qp

?
2,
?

3q Ñ Q.

(b) #HomQpQp
?

2,
?

3q,Rq “ 4.

There are two Q-homomorphisms φ1, φ2 : Qp
?

2q Ñ Q, determined by
φ1p
?

2q “
?

2 and φ2p
?

2q “ ´
?

2, respectively.

Now we extend them to Qp
?

2,
?

3q, by viewing Qp
?

2,
?

3q “ Qp
?

2qp
?

3q. The
polynomial x2´ 3 is irreducible in Qp

?
2qrxs, hence it is the minimal polynomial of?

3 over Qp
?

2q. Its zeroes ˘
?

3 P R. Hence #HomQp
?
2qpQp

?
2,
?

3q,Rq “ 2. This

means that given a Q-homomorphism Qp
?

2q Ñ R, we can extend it to Qp
?

2,
?

3q
in two ways, depending on whether

?
3 is mapped to

?
3 or ´

?
3.

The four Q-homomorphisms φ1, φ2, φ3, φ4 : Qp
?

2,
?

3q Ñ R are determined by
φ1p
?

2q “
?

2, φ1p
?

3q “
?

3,
φ2p
?

2q “ ´
?

2, φ2p
?

3q “
?

3,
φ3p
?

2q “
?

2, φ3p
?

3q “ ´
?

3,
φ4p
?

2q “ ´
?

2, φ4p
?

3q “ ´
?

3, respectively.

(c) #HomQpQp
?

2,
?

3q,Cq “ 4.
As above.

Example 3. Compute the cardinality of HomQpQpξq,Fq, where ξ “ e2πi{5 is a
primitive 5th root of 1 and F “ R,C.

Sol.: Observe that over Q the polynomial x5 ´ 1 decomposes as x5 ´ 1 “ px ´
1qpx4 ` x3 ` x2 ` x` 1q, with x4 ` x3 ` x2 ` x` 1 irreducible (see Milne, Lemma

1



2

1.41). This shows that x4 ` x3 ` x2 ` x` 1 is the minimal polynomial of ξ over Q.
Its roots in C are ξ, ξ2, ξ3, ξ4, none of which is real. One has ξ4 “ ξ̄ and ξ3 “ ξ̄2.

(a) from the above discussion, it follows that #HomQpQpξq,Rq “ 0.

(b) #HomQpQpξq,Cq “ 4
There four homomorphisms φ1, φ2, φ3, φ4 : Qpξq Ñ C, determined by φ1pξq “ ξ,
φ2pξq “ ξ2, φ3pξq “ ξ3, φ4pξq “ ξ4, respectively.

Example 4. Compute the cardinality of HomQp
?
5qpQpξq,Cq, where ξ “ e2πi{5 is

a primitive 5th root of 1.

Sol.: Observe that Qp
?

5q is a subfield of Qpξq: for this it is sufficient to check that?
5 “ 2pξ`ξ4q “ 2pξ` ξ̄q P Qp

?
5q. Over Qp

?
5q, the polynomial x4`x3`x2`x`1

decomposes into two degree 2 irreducible factors

px2 ´ p
´1`

?
5

2
qx` 1qpx2 ` p

1`
?

5

2
qx` 1q,

where px2´p´1`
?
5

2 qx`1q “ px´ξqpx´ ξ̄q and px2`p 1`
?
5

2 qx`1q “ px´ξ2qpx´ ξ̄2q.

As a subfield of Qpξq, the field Qp
?

5q is obtained by adjoining ξ ` ξ̄ “ p´1`
?
5

2 q or

equivalently ξ2 ` ξ̄2 “ ´p 1`
?
5

2 q to Q:

Q Ă Qp
?

5q “ Qpξ ` ξ̄q “ Qpξ2 ` ξ̄2q Ă Qpξq

For an automorphism in HomQpQpξq,Cq to fix Qp
?

5q it is necessary and sufficient
that either ξ ÞÑ ξ or ξ ÞÑ ξ̄.

Conclusion: #HomQp
?
5qpQpξq,Cq “ 2.


