Example 1. Compute the cardinality of Hom_Q($\mathbf{Q}(\sqrt[4]{2}), \mathbf{F}$), where $\mathbf{F} = \mathbf{Q}, \mathbf{R}, \mathbf{C}$.

Sol.: The minimal polynomial of $\sqrt[4]{2}$ over \mathbf{Q} is $f(x) = x^4 - 2$. Its zeroes are $Z(f) = \{\sqrt[4]{2}, -\sqrt[4]{2}, \sqrt[4]{2}i, -\sqrt[4]{2}i\}.$

(a) $\#\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt[4]{2}),\mathbf{Q}) = 0.$

Since f has no zeroes in **Q**, there are no **Q**-homomorphisms $\phi: \mathbf{Q}(\sqrt[4]{2}) \to \mathbf{Q}$. Another way to argue: since $\dim_{\mathbf{Q}} \mathbf{Q}(\sqrt[4]{2}) = 4$, $\dim_{\mathbf{Q}} \mathbf{Q} = 1$ and every field homomorphism is necessarily injective, there are no **Q**-homomorphisms $\phi: \mathbf{Q}(\sqrt[4]{2}) \to \mathbf{Q}$.

(b) $\#\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt[4]{2}), \mathbf{R}) = 2.$

The polynomial f has 2 zeroes in \mathbf{R} , namely $\sqrt[4]{2}, -\sqrt[4]{2}$. Hence there are two \mathbf{Q} -homomorphisms $\phi_1, \phi_2 : \mathbf{Q}(\sqrt[4]{2}) \to \mathbf{R}$, determined by $\phi_1(\sqrt[4]{2}) = \sqrt[4]{2}$ and $\phi_2(\sqrt[4]{2}) = -\sqrt[4]{2}$, respectively.

(c) $\#\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt[4]{2}), \mathbf{C}) = 4.$

The polynomial f has 4 zeroes in **C**. Hence there are four **Q**-homomorphisms $\phi_1, \phi_2, \phi_3, \phi_4: \mathbf{Q}(\sqrt[4]{2}) \to \mathbf{C}$, determined by $\phi_1(\sqrt[4]{2}) = \sqrt[4]{2}, \quad \phi_2(\sqrt[4]{2}) = -\sqrt[4]{2}, \quad \phi_3(\sqrt[4]{2}) = \sqrt[4]{2}i, \quad \phi_4(\sqrt[4]{2}) = -\sqrt[4]{2}i,$ respectively.

Example 2. Compute the cardinality of $\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt{2},\sqrt{3}),\mathbf{F})$, where $\mathbf{F} = \mathbf{Q}, \mathbf{R}, \mathbf{C}$. Sol.:

(a) $\#\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt{2},\sqrt{3}),\mathbf{Q}) = 0.$

Consider the subfield $\mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\sqrt{2},\sqrt{3})$. Since the minimal polynomial $x^2 - 2$ of $\sqrt{2}$ over \mathbf{Q} has no roots in \mathbf{Q} , there are no \mathbf{Q} -homomorphisms $\phi : \mathbf{Q}(\sqrt{2}) \to \mathbf{Q}$. It follows that there are no \mathbf{Q} -homomorphisms $\phi : \mathbf{Q}(\sqrt{2},\sqrt{3}) \to \mathbf{Q}$.

(b) $\#\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt{2},\sqrt{3}),\mathbf{R}) = 4.$

There are two **Q**-homomorphisms $\phi_1, \phi_2 \colon \mathbf{Q}(\sqrt{2}) \to \mathbf{Q}$, determined by $\phi_1(\sqrt{2}) = \sqrt{2}$ and $\phi_2(\sqrt{2}) = -\sqrt{2}$, respectively.

Now we extend them to $\mathbf{Q}(\sqrt{2},\sqrt{3})$, by viewing $\mathbf{Q}(\sqrt{2},\sqrt{3}) = \mathbf{Q}(\sqrt{2})(\sqrt{3})$. The polynomial $x^2 - 3$ is irreducible in $\mathbf{Q}(\sqrt{2})[x]$, hence it is the minimal polynomial of $\sqrt{3}$ over $\mathbf{Q}(\sqrt{2})$. Its zeroes $\pm\sqrt{3} \in \mathbf{R}$. Hence $\#\text{Hom}_{\mathbf{Q}(\sqrt{2})}(\mathbf{Q}(\sqrt{2},\sqrt{3}),\mathbf{R}) = 2$. This means that given a **Q**-homomorphism $\mathbf{Q}(\sqrt{2}) \to \mathbf{R}$, we can extend it to $\mathbf{Q}(\sqrt{2},\sqrt{3})$ in two ways, depending on whether $\sqrt{3}$ is mapped to $\sqrt{3}$ or $-\sqrt{3}$.

The four **Q**-homomorphisms $\phi_1, \phi_2, \phi_3, \phi_4 \colon \mathbf{Q}(\sqrt{2}, \sqrt{3}) \to \mathbf{R}$ are determined by $\phi_1(\sqrt{2}) = \sqrt{2}, \quad \phi_1(\sqrt{3}) = \sqrt{3},$ $\phi_2(\sqrt{2}) = -\sqrt{2}, \quad \phi_2(\sqrt{3}) = \sqrt{3},$ $\phi_3(\sqrt{2}) = \sqrt{2}, \quad \phi_3(\sqrt{3}) = -\sqrt{3},$ $\phi_4(\sqrt{2}) = -\sqrt{2}, \quad \phi_4(\sqrt{3}) = -\sqrt{3},$ respectively. (c) $\# \operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt{2}, \sqrt{3}), \mathbf{C}) = 4.$

As above.

Example 3. Compute the cardinality of Hom_{**Q**}($\mathbf{Q}(\xi)$, **F**), where $\xi = e^{2\pi i/5}$ is a primitive 5th root of 1 and **F** = **R**, **C**.

Sol.: Observe that over **Q** the polynomial $x^5 - 1$ decomposes as $x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$, with $x^4 + x^3 + x^2 + x + 1$ irreducible (see Milne, Lemma

1.41). This shows that $x^4 + x^3 + x^2 + x + 1$ is the minimal polynomial of ξ over **Q**. Its roots in **C** are ξ, ξ^2, ξ^3, ξ^4 , none of which is real. One has $\xi^4 = \bar{\xi}$ and $\xi^3 = \bar{\xi}^2$.

(a) from the above discussion, it follows that $\#\text{Hom}_{\mathbf{Q}}(\mathbf{Q}(\xi), \mathbf{R}) = 0$.

(b) $\#\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\xi), \mathbf{C}) = 4$

There four homomorphisms $\phi_1, \phi_2, \phi_3, \phi_4 \colon \mathbf{Q}(\xi) \to \mathbf{C}$, determined by $\phi_1(\xi) = \xi$, $\phi_2(\xi) = \xi^2$, $\phi_3(\xi) = \xi^3$, $\phi_4(\xi) = \xi^4$, respectively.

Example 4. Compute the cardinality of $\operatorname{Hom}_{\mathbf{Q}(\sqrt{5})}(\mathbf{Q}(\xi), \mathbf{C})$, where $\xi = e^{2\pi i/5}$ is a primitive 5th root of 1.

Sol.: Observe that $\mathbf{Q}(\sqrt{5})$ is a subfield of $\mathbf{Q}(\xi)$: for this it is sufficient to check that $\sqrt{5} = 2(\xi + \xi^4) = 2(\xi + \overline{\xi}) \in \mathbf{Q}(\sqrt{5})$. Over $\mathbf{Q}(\sqrt{5})$, the polynomial $x^4 + x^3 + x^2 + x + 1$ decomposes into two degree 2 irreducible factors

$$(x^{2} - (\frac{-1 + \sqrt{5}}{2})x + 1)(x^{2} + (\frac{1 + \sqrt{5}}{2})x + 1),$$

where $(x^2 - (\frac{-1+\sqrt{5}}{2})x + 1) = (x - \xi)(x - \overline{\xi})$ and $(x^2 + (\frac{1+\sqrt{5}}{2})x + 1) = (x - \xi^2)(x - \overline{\xi}^2)$. As a subfield of $\mathbf{Q}(\xi)$, the field $\mathbf{Q}(\sqrt{5})$ is obtained by adjoining $\xi + \overline{\xi} = (\frac{-1+\sqrt{5}}{2})$ or equivalently $\xi^2 + \overline{\xi}^2 = -(\frac{1+\sqrt{5}}{2})$ to \mathbf{Q} :

$$\mathbf{Q} \subset \mathbf{Q}(\sqrt{5}) = \mathbf{Q}(\xi + \bar{\xi}) = \mathbf{Q}(\xi^2 + \bar{\xi}^2) \subset \mathbf{Q}(\xi)$$

For an automorphism in $\operatorname{Hom}_{\mathbf{Q}}(\mathbf{Q}(\xi), \mathbf{C})$ to fix $\mathbf{Q}(\sqrt{5})$ it is necessary and sufficient that either $\xi \mapsto \xi$ or $\xi \mapsto \overline{\xi}$. Conclusion: $\#\operatorname{Hom}_{\mathbf{Q}(\sqrt{5})}(\mathbf{Q}(\xi), \mathbf{C}) = 2$.

 $\mathbf{2}$