${\bf F}$ field, ${\bf F} \subset {\bf E}$ finite extension, ${\bf F} \subset {\bf L}$ arbitrary extension.

 $\operatorname{Hom}_{\mathbf{F}}(E,L) = \{\phi \colon \mathbf{E} \to \mathbf{L}, \text{ field homomorphisms such that } \phi_{|\mathbf{F}} := id_{|\mathbf{F}}\}$

Goal: estimate the cardinality of $\operatorname{Hom}_{\mathbf{F}}(E, L)$.

Started from special case $\mathbf{E} = \mathbf{F}(\alpha)$, where $\alpha \in \mathbf{E}$, with minimal polynomial $f \in \mathbf{F}[x]$. In this case, an **F**-homomorphism ϕ is completely determined by $\phi(\alpha)$.

Lemma. (Milne, Prop.2.1) Hom_{**F**}(**F**(α), **L**) is in 1-1 correspondence with the set **Z**(f) \cap **L** = { $z \in$ **L** | f(z) = 0}. The correspondence is given by $\phi \mapsto \phi(\alpha)$.

Corollary. $\#\text{Hom}_{\mathbf{F}}(\mathbf{F}(\alpha), \mathbf{L}) \leq \deg(f).$

In general (Milne, Prop.2.7)

Proposition. $\#\text{Hom}_{\mathbf{F}}(\mathbf{E}, \mathbf{L}) \leq [\mathbf{E} : \mathbf{F}].$

Example. $\mathbf{F} = \mathbf{Q}, \quad \alpha = \sqrt{2}, \quad \mathbf{L} = \mathbf{R}.$ Then $\#\text{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt{2}), \mathbf{R}) = 2.$ There are 2 possibilities: $\phi(\sqrt{2}) = \pm\sqrt{2}.$

Example. $\mathbf{F} = \mathbf{Q}, \quad \alpha = \sqrt[3]{2}, \quad \mathbf{L} = \mathbf{R}.$ Then $\#\text{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt[3]{2}), \mathbf{R}) = 1.$ There is only 1 possibility: $\phi(\sqrt[3]{2}) = \sqrt[3]{2}.$

Example. $\mathbf{F} = \mathbf{Q}, \quad \alpha = \sqrt[3]{2}, \quad \mathbf{L} = \mathbf{C}.$ Then $\#\text{Hom}_{\mathbf{Q}}(\mathbf{Q}(\sqrt[3]{2}), \mathbf{C}) = 3.$ There are 3 possibilities: $\phi(\sqrt[3]{2}) = \sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2$, where $\omega = e^{2\pi i/3}$.