NAProject 2018. Module 2. Lecture 3: examples.

Example 1. Let **F** be a field and let $\mathbf{F} \subset \mathbf{E}$ be a field extension. Let α and β be algebraic elements in **E**, with minimal polynomial over **F** of degree *n* and *m* respectively. Then $[\mathbf{F}(\alpha, \beta) : \mathbf{F}] \leq n \cdot m$.

Sol.: The simple extension $\mathbf{F} \subset \mathbf{F}(\alpha)$ has degree $[\mathbf{F}(\alpha) : \mathbf{F}] = n$. The degree of the simple extension $\mathbf{F}(\alpha) \subset \mathbf{F}(\alpha, \beta)$ is $\leq m$: this is because the minimal polynomial of β , which is irreducible over \mathbf{F} , could become reducible over $\mathbf{F}(\alpha)$. Hence the minimal polynomial of β over $\mathbf{F}(\alpha)$ has degree $\leq m$ (we can say no more). By the multiplicativity of the degrees we obtain

 $\begin{bmatrix} \mathbf{p}(-2) \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{p}(-2) \\ \mathbf{p} \end{bmatrix}$

$$[\mathbf{F}(\alpha,\beta):\mathbf{F}] = [\mathbf{F}(\alpha):\mathbf{F}][[\mathbf{F}(\alpha,\beta):\mathbf{F}(\alpha)] \le n \cdot m$$

Example 2. Compute the degree $[\mathbf{Q}(\sqrt{5}, \sqrt{11}) : \mathbf{Q}].$

Sol. Over \mathbf{Q} , the minimal polynomial of $\sqrt{5}$ is $f(x) = x^2 - 5$ and the minimal polynomial of $\sqrt{11}$ is $g(x) = x^2 - 11$. To see that g remains irreducible over $\mathbf{Q}(\sqrt{5})$ it is sufficient to check that $\sqrt{11} \notin \mathbf{Q}(\sqrt{5})$:

if $\sqrt{11} \in \mathbf{Q}(\sqrt{5})$, then it can be written as $\sqrt{11} = a + b\sqrt{5}$, with $a, b \in \mathbf{Q}$. Squaring both terms, we get

$$11 = a^{2} + 5b^{2} + 2ab\sqrt{5} \quad \Leftrightarrow \quad \begin{cases} a^{2} + 5b^{2} = 11\\ 2ab\sqrt{5} = 0 \end{cases}$$

The above system has no solution in **Q**. Conclusion: $[\mathbf{Q}(\sqrt{5}, \sqrt{11}) : \mathbf{Q}] = 2 \cdot 2 = 4$

Example 3. Compute the degree $[\mathbf{Q}(\sqrt{2}, \sqrt[4]{2}) : \mathbf{Q}].$

Sol.: Over **Q**, the minimal polynomial of $\sqrt{2}$ is $f(x) = x^2 - 2$ and the minimal polynomial of $\sqrt[4]{2}$ is $g(x) = x^4 - 2$.

Let's show that in this case $[\mathbf{Q}(\sqrt{2}, \sqrt[4]{2}) : \mathbf{Q}] < 2 \cdot 4 = 8$:

since $\sqrt{2} = (\sqrt[4]{2})^2$ we have that $\mathbf{Q}(\sqrt{2}, \sqrt[4]{2}) = \mathbf{Q}(\sqrt[4]{2})$ and $[\mathbf{Q}(\sqrt{2}, \sqrt[4]{2}) : \mathbf{Q}] = 4 < 8$.

Example 4. Compute the degree $[\mathbf{Q}(\sqrt[3]{2}, \omega) : \mathbf{Q}]$, where $\omega = e^{2\pi i/3}$.

Sol.: In a previous excercise (see Lecture1-examples, page 1, n.7) we saw that $\mathbf{Q}(\sqrt[3]{2},\omega) = \mathbf{Q}(\sqrt[3]{2},\omega\sqrt[3]{2})$. Over \mathbf{Q} , both $\sqrt[3]{2}$ and $\omega\sqrt[3]{2}$ have the same minimal polynomial $f(x) = x^3 - 2$, of degree 3.

Let's show that in this case $[\mathbf{Q}(\sqrt[3]{2},\omega\sqrt[3]{2}):\mathbf{Q}] = 3 \cdot 2 = 6 < 9$:

we have $[\mathbf{Q}(\sqrt[3]{2}):\mathbf{Q}] = 3$. But over $\mathbf{Q}(\sqrt[3]{2})$, the polynomial f splits as

$$x^{3} - 2 = (x - \sqrt[3]{2})(x^{2} + \sqrt[3]{2}x + (\sqrt[3]{2})^{2}),$$

and the degree-2 factor $x^2 + \sqrt[3]{2}x + (\sqrt[3]{2})^2$ is the minimal polynomial of $\omega \sqrt[3]{2}$ over $\mathbf{Q}(\sqrt[3]{2})$.

Conclusion: $\left[\mathbf{Q}(\sqrt[3]{2},\omega\sqrt[3]{2}):\mathbf{Q}\right] = 3 \cdot 2 = 6.$