Proof of items (a), (b), (d) of the following proposition. Item (c) will be addressed later.

Proposition. (Milne, Prop.2.4) For every polynomial $f \in \mathbf{F}[x]$, there exists a field extension $\mathbf{F} \subset \mathbf{K}$ with the property that (a) f, as a polynomial in $\mathbf{K}[x]$, decomposes as $f(x) = c(x - \alpha_1) \dots (x - \alpha_m)$, with $\alpha_i \in \mathbf{K}, c \in \mathbf{K}$;

(b) $\mathbf{F}(\alpha_1,\ldots,\alpha_m) = \mathbf{K}.$

In addition,

(c) the field **K** is unique up to **F**-isomorphism;

(d) If $\deg(f) = n$, then $[\mathbf{K} : \mathbf{F}] \leq n!$.

Definition. An algebraically closed field is a field \mathbf{F} with the property that every polynomial $f \in \mathbf{F}[x]$ splits as $f(x) = c(x - \alpha_1) \dots (x - \alpha_m)$, with $\alpha_i, c \in \mathbf{F}$.

In other words, "all zeroes of every polynomial $f \in \mathbf{F}[x]$ are in \mathbf{F} ".

Example. The field of complex numbers **C** is algebraically closed: by the Fundamental of Algebra, every non-constant polynomial in $\mathbf{C}[x]$ has a zero in **C**. This implies that every $f \in \mathbf{C}[x]$ splits as $f(x) = c(x - \alpha_1) \dots (x - \alpha_m)$ in $\mathbf{C}[x]$.

Example. The fields **Q** and **R** are not algebraically closed: for example the polynomial $f(x) = x^2 + 1$ has no zero in **Q**, nor in **R**.

Equivalent characterizations of an algebraically closed field (Milne, Prop.1.4.2 & Def. 1.4.3(a)).

Definition. An algebraic closure of a field \mathbf{F} is an extension $\overline{\mathbf{F}}$ of \mathbf{F} which is algebraically closed over \mathbf{F} and consists of algebraic elements over \mathbf{F} .

Fact. (Milne Chapter 6) For every field **F** there exists an extension $\mathbf{F} \subset \mathbf{L}$ which is algebraically closed.

Proposition. (Milne, Prop. 1.45) Every field **F** admits an algebraic closure $\overline{\mathbf{F}}$.

 $\overline{\mathbf{F}}$ is unique, but *only* up to isomorphism and the isomorphism is generally not unique. Colloquially we often speak of "the" algebraic closure of a given field, but it is not correct.

Let ${\bf L}$ be an algebraically closed extension of ${\bf F}.$ Then one defines

 $\overline{\mathbf{F}} = \{ x \in \Omega \mid x \text{ is algebraic over } \mathbf{F} \}.$

The proof that $\overline{\mathbf{F}}$ satisfies the required properties, i.e. is a field and it is algebraically closed, is based on the following two facts:

- (1) $\mathbf{F} \subset \mathbf{K}$ fields, $\alpha \in \mathbf{K}$. Then α is algebraic over \mathbf{F} if and only if there exists a finite extension \mathbf{E} of \mathbf{F} such that $\mathbf{F} \subset \mathbf{E} \subset \mathbf{K}$.
- (2) $\mathbf{F} \subset \mathbf{K} \subset \mathbf{L}$ fields. If \mathbf{K} is algebraic over \mathbf{F} and \mathbf{L} is algebraic over \mathbf{K} , then \mathbf{L} is algebraic over \mathbf{F} .

Example. $\overline{\mathbf{R}} \cong \mathbf{C}$;

In **C** there is an algebraic closure $\overline{\mathbf{Q}}$ of **Q**: it consists of the complex numbers which are algebraic over **Q**. It is a proper subset of **C** because it is countable: for example it does not contain π .