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Proof of items (a), (b), (d) of the following proposition. Item (c) will be addressed later.

Proposition. (Milne, Prop.2.4) For every polynomial f ∈ F[x], there exists a field extension
F ⊂ K with the property that
(a) f , as a polynomial in K[x], decomposes as f(x) = c(x− α1) . . . (x− αm), with αi ∈ K, c ∈ K;
(b) F(α1, . . . , αm) = K.

In addition,
(c) the field K is unique up to F-isomorphism;
(d) If deg(f) = n, then [K : F] ≤ n!.

Definition. An algebraically closed field is a field F with the property that every polynomial
f ∈ F[x] splits as f(x) = c(x− α1) . . . (x− αm), with αi, c ∈ F.

In other words, “all zeroes of every polynomial f ∈ F[x] are in F”.

Example. The field of complex numbers C is algebraically closed: by the Fundamental of Algebra,
every non-constant polynomial in C[x] has a zero in C. This implies that every f ∈ C[x] splits as
f(x) = c(x− α1) . . . (x− αm) in C[x].

Example. The fields Q and R are not algebraically closed: for example the polynomial f(x) =
x2 + 1 has no zero in Q, nor in R.

Equivalent characterizations of an algebraically closed field (Milne, Prop.1.4.2 & Def. 1.4.3(a)).

Definition. An algebraic closure of a field F is an extension F of F which is algebraically closed
over F and consists of algebraic elements over F.

Fact. (Milne Chapter 6) For every field F there exists an extension F ⊂ L which is algebraically
closed.

Proposition. (Milne, Prop. 1.45) Every field F admits an algebraic closure F.

F is unique, but only up to isomorphism and the isomorphism is generally not unique. Colloquially
we often speak of “the” algebraic closure of a given field, but it is not correct.

Let L be an algebraically closed extension of F. Then one defines

F = {x ∈ Ω | x is algebraic over F}.

The proof that F satisfies the required properties, i.e. is a field and it is algebraically closed, is
based on the following two facts:

(1) F ⊂ K fields, α ∈ K. Then α is algebraic over F if and only if there exists a finite extension E
of F such that F ⊂ E ⊂ K.

(2) F ⊂ K ⊂ L fields. If K is algebraic over F and L is algebraic over K, then L is algebraic
over F.

Example. R ∼= C;
In C there is an algebraic closure Q of Q: it consists of the complex numbers which are algebraic
over Q. It is a proper subset of C because it is countable: for example it does not contain π.


