NAProject 2018.  Module 2.  Lecture 1: examples.

F field; f a polynomial in F[z], Ff a splitting field of f over F.

Examples:

(1) f=2"-2€Ql], Q= Q(v2):

f is irreducible in Q[z]: if it were reducible, it could only decompose into the product of two linear
factors (x — a)(z — ), with «, 8 zeroes of f: impossible over Q, since the zeroes of f are /2,
which are irrational.

A splitting field of f over Q is Q(v/2, —v/2): over this field f splits into linear factors f(x) =
(r = V(@ + V2).

It remain to observe that Q(v/2, —v/2) = Q(v/2): a field which contains v/2 necessarily contains
also —v/2.

2) f=2>-2€R[z], Ry =Rt
f is reducible in R[z], since £v/2 € R. Hence R; = R.

(3) f=2*+1€Q[z], Qr = Q(i):

f is irreducible in Q[z]: if it were reducible, it could only decompose into the product of two linear
factors (x — a)(x — ), with «, 8 zeroes of f: impossible, since the zeroes of f are +i, which are
complex numbers.

A splitting field of f over Q is Q(i, —i) = Q(7): over this field f splits into linear factors f(x) =
(x — 1) (z +1).

(4) f=22+1€R[z], Ry =R(i) = C:
From the above discussion it also follows that a splitting field of f over R is R (i, —i) = R(i) = C.

(5) f=2%-1¢€Qz], Qf = Q(w), where w = —% +i§:

[ is reducible in Q[z], as 2 — 1 = (x — 1)(2® + x + 1), with 2? + z + 1 irreducible in Q[z]. The
zeroes of 22 + x + 1 are w and @ = w?.

A splitting field of f over Q is Q(w,w?) = Q(w): over this field f splits into linear factors f(x) =
(x —1)(z — w)(z — w?).

6) f=2>-1€R[z], Ry = R(w) = C:
From the discusion in (d) it also follows that a splitting field of f over R is R(w,w?) = R(w)
It remains to observe that R(w) = C: this follows from the fact that i = %(W —w?) € R(w).

(7) f=2%-2¢€Qz], Qf = Q(\/Zw):

f is irreducible in Q[z]: its roots in C are /2, V/2w and /2w?.

A splitting field of f over Q is Q(V/2, V2w, ¥/2w?).

It remains to show that Q(V/2, V2w, ¥2w?) = Q(V/2,w):

since w = V/2w?/V/2w we have the inclusion Q(v/2,w) C Q(V/2, V2w, V/2w?). The other inclusion
is obvious.



Excercise. Consider the real number o = /2 + /2. Determine the minimal polynomial of o

in Q[x].

Sol.: We look for a monic polynomial in Q[z], vanishing in «, and of minimum degree among the

polynomials with these properties.

We construct the minimal polynomial of @ in two stages:

(a) we determine a monic polynomial f in Q[z| vanishing on «;

(b) we prove that the degree [Q(«) : Q] equals the degree of f. From this we conclude that f is
irreducible and therefore is the minimal polynomial of « in Q[z].

(a) Write V/2 = a — /2.

Raising both terms of the above equality to the 3"¢ power we get
2=(a—v2)?=0a®—-2v2a® + 6o — 22

& a® 4 6a—2=v2(30% +2). (1)

After squaring both terms of the above equality, all roots have disappeared, and we see that « is a
zero of the degree 6 polynomial in Z[x]

f(z) = 2% — 62* — 423 + 122% — 242 — 4.
We deduce that [Q(«) : Q] < 6.

Recall that, since f is monic and f(«) = 0,
f is the minimal polynomial of «
& f is irreducible in QJz]

& [Qa): Q] = deg(f) =6.

(b) Eisenstein’s criterion for irreducibility does not apply to f: the prime p = 2 divides all coeffi-
cients, except the leading one, however p? = 4 does divide the constant term. Hence checking the
irreducibility of f directly may require quite a bit of work...

Instead we choose to prove that [Q(«) : Q] = 6 = deg(f), using field theory.

If we show that both Q(v/2), which an extension of Q of degree 2, and Q(+/2), which an extension
of Q of degree 3, are subfields of Q(«), then the multiplicativity of degrees implies that 2 and 3
divide [Q(«) : Q]. It follows that [Q(«) : Q] = 6 and that f is the desired minimal polynomial of
a.

In order to do that it is sufficiento to observe that /2 and ¥/2 lie in Q(a): from (1) we have that
V2 = %, a rational function of a, lies in Q(a); then also V/2 = a — /2 lies in Q(«). This
finishes the proof of (b).

Conclusion: the minimal polynomial of a is f(z) = 25 — 62* — 42® + 1222 — 242 — 4.



