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• We finished the proof of
Proposition 1.271

4 : Let α be an element of an extension field K of F , with α
algebraic over F . Let I be the kernel of the “evaluation” homomorphism
ψα : F [X]→ F [α] by ψα(g(X)) = g(α). Let p(X) be a monic polynomial in F [X].
These conditions on p(X) ∈ F [X] are equivalent:

(a) p(α) = 0 and p(X) has least degree among all non-zero polynomials
f(X) ∈ F [X] such that f(α) = 0.

(b) I = p(X)F [X] = (p(X) ), that is, p(X) generates the ideal I.
(c) p(α) = 0 and p(X) is irreducible.

• Remark1.27 1
3 : Let α be an element of an extension field K of F such that

f(α) = 0, for some non-zero f(X) ∈ F [X]. Then:

(1) [F (α) : F ] ≤degee f(X).
(2) [F (α) : F ] ≤ [K : F ]. Note that [K : F ] might be ∞.

• Theorem 1.27 3
4 : Let α be an element of a extension field K of F . These

conditions are equivalent:

(1) α is algebraic.
(2) F [α] = F (α).
(3) F [α] is finite-dimensional as a vector space over F .

• The next theorem is related to what the book calls “Stem fields”. Given any
non-constant polynomial g(X) ∈ F [X], where F is any field, we can always find an
extension field of F in which g(X) has a root. First choose an irreducible factor of
g(X); if we can find a root of this irreducible factor, we’ll have a root of g(X).
Theorem 1.25: Construction of extension fields with roots. Let F be a field
and p(X) ∈ F [X] a monic irreducible polynomial of degree m. Let I = (p(X)) =
p(X)F (X), the ideal of F [X] generated by p(X). Then:

(1) F [x] = F [X]
(p(X)) , where x is the coset X+ I, is an extension field of degree m over

F , and p(x) = 0.
(2) If K/F is a field extension, and α ∈ K satisfies p(α) = 0, then there exists a

field isomorphism ϕ = ϕα : F [x]
∼=→ F [α] such that ϕ(x) = α and ϕ(c) = c for

each c ∈ F . Note that ϕ((f(x))) = f(α) for each f(X) ∈ F [X].

F [x]
ϕ,∼=−−−−→ F [α]

⊆
x ⊆

x
F

idF−−−−→ F .

Then ϕα is an F -isomorphism: F [x]
∼=→ F [α].

• (We didn’t do) Terminology: An F -homomorphism is a field homomorphism
ϕ : K → E, where K/F and E/F are field extensions and ϕ is the identity homo-
morphism on F , that is, ϕ|F (= ϕ restricted to F ) is idF : F → F .

K
ϕ−−−−→ E

⊆
x ⊆

x
F

idF−−−−→ F .

• Example 1.25.1: For the ring R = F [X]
(p(X)) = F [x] of Theorem 1.25 with F = F2

and p(X) = X2 +X + 1, we have (a) R has four elements: R = {0, 1, x, 1 +x}, and
1
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(b) R is a field. We made addition and multiplication tables for R, using the fact
that the coset [X2] = [X2 +X2 +X + 1] = [X + 1].

• Two useful facts from ring theory: Let R be a commutative ring.

(a) If I is an ideal of R, then R
I = { cosets r+ I, where r ∈ R} is also a ring, with

inherited +, · from R.
(b) if ψ : R→ S is a ring homomorphism, if I is the kernel of ψ, and if π : R→ R

I is
the natural map π(r) = r+I, then there exists a one-to-one ring homomorphism
ϕ : RI → S such that ϕ ◦π = ψ. Pictorially, if we have maps ψ and π as shown,

R
ψ−−−−→ S

π

y
R
I

then there exists a diagonal map ϕ : RI → S such that the diagram commutes.
If, in addition, ψ is a surjection (onto), then ϕ is an isomorphism (one-to-one
and onto).

•Corollary 1.25.2: (didn’t do) IfK/F and E/F are field extensions, p(X) ∈ F [X]
is irreducible and α ∈ K,β ∈ E satisfy p(α) = 0 = p(β), then there exists an F -

isomorphism ϕ : F (α)
∼=→ F (β). To prove this, just take ϕ = ϕβ ◦ ϕα−1, where the

isomorphisms ϕα and ϕβ are given by part (2) of Theorem 1.25.

F (α) = F [α]
ϕ−1
α−→ F [x]

ϕβ−→ F [β] = F (β) .

• Examples 1.25.3: For F = R and p(X) = X2 + 1, the construction in Theorem
1.25 can be thought of as “creating a square-root for −1”, or, equivalently, a root

for X2 + 1, by setting R = R[X]
(X2+1) . Similarly to create a square-root for 2, let

R = Q[X]
(X2−2) .

• Proposition 1.30: Let E/F be a field extension. These conditions are equiva-
lent:

(1) E/F is finite, i.e. [E : F ] <∞.
(2) E/F is algebraic and finitely generated over F , i.e. each element of E is alge-

braic and there exists a finite set α1, . . . , αn ∈ E such that E = F (α1, . . . , αn).
(3) There exists a finite set of algebraic (over F ) elements α1, . . . , αn ∈ E such

that E = F (α1, . . . , αn).

• Corollary 1.31: Algebraic Tower of Fields Theorem (Mentioned but didn’t
prove) Let F ⊆ E ⊆ K be fields. If K is algebraic over E and E is algebraic over
F , then K is algebraic over F .

•Discussion of roots of unity: Let p be a prime number. Let ζp = e
2πi
p . Then ζp

is a primitive pth root of unity. In the complex plane with the x-axis real numbers
and the y-axis the pure imaginary numbers, there are p roots of unity, evenly spaced
as p points around the circle x2 + y2 = 1, including the point x = 1, y = 0. The
minimal polynomial for ζp over Q is p(X) = Xp−1 + · · ·+X + 1.

• Lemma 1.41: If p is a prime number then p(X) = Xp−1 + · · · + X + 1 is
irreducible over Q; hence [Q(ζp) : Q] = p− 1.

• Exercise: Find [Q(ζ17, 2
1
5 ) : Q]. Answer: 80.


