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e We finished the proof of

Proposition 1.27%: Let o be an element of an extension field K of F, with «
algebraic over F'. Let I be the kernel of the “evaluation” homomorphism

Yo : F[X] — Fla] by ¥4(9(X)) = g(@). Let p(X) be a monic polynomial in F[X].
These conditions on p(X) € F[X] are equivalent:

(a) p(a) =0 and p(X) has least degree among all non-zero polynomials
f(X) € F[X] such that f(a) =0.
(b) I =p(X)F[X]= (p(X)), that is, p(X) generates the ideal I.
(¢) p(a) =0 and p(X) is irreducible.
. Remark1.27%: Let a be an element of an extension field K of F' such that
f(a) =0, for some non-zero f(X) € F[X]. Then:
(1) [Fa) : F] <degee f(X).
(2) [F(a): F) < [K : F]. Note that [K : F] might be oco.
e Theorem 1.273: Let a be an element of a extension field K of F. These
conditions are equivalent:
(1) « is algebraic.
(2) Fla] = F(a).
(3) Fla] is finite-dimensional as a vector space over F.

e The next theorem is related to what the book calls “Stem fields”. Given any

non-constant polynomial g(X) € F[X], where F is any field, we can always find an

extension field of F' in which ¢g(X) has a root. First choose an irreducible factor of

g(X); if we can find a root of this irreducible factor, we’ll have a root of g(X).

Theorem 1.25: Construction of extension fields with roots. Let F' be a field

and p(X) € F[X] a monic irreducible polynomial of degree m. Let I = (p(X)) =

p(X)F(X), the ideal of F[X] generated by p(X). Then:

(1) Flz] = %, where z is the coset X 4 I, is an extension field of degree m over
F, and p(x) = 0.

(2) If K/F is a field extension, and o € K satisfies p(a) = 0, then there exists a
field isomorphism ¢ = @, : F[z] = F|a] such that ¢(z) = o and ¢(c) = ¢ for
each ¢ € F. Note that ¢((f(z))) = f(a) for each f(X) € F[X].

Flz] —£=5 Fla]

< <
Then ¢, is an F-isomorphism: F[z] 5 Fla].
e (We didn’t do) Terminology: An F-homomorphism is a field homomorphism

¢: K — E, where K/F and E/F are field extensions and ¢ is the identity homo-
morphism on F', that is, p|r (= @ restricted to F) is idp : FF — F.

K -2+ E

o
F 9 g

e Example 1.25.1: For the ring R = % = F[z] of Theorem 1.25 with F' = Fy

and p(X) = X2+ X + 1, we have (a) R has four elements: R = {0,1,z,1+z}, and
1
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(b) R is a field. We made addition and multiplication tables for R, using the fact

that the coset [X?] = [X2+ X2+ X + 1] = [X + 1].

e Two useful facts from ring theory: Let R be a commutative ring.

(a) If I is an ideal of R, then £ = { cosets r + I, where r € R} is also a ring, with
inherited 4+, - from R.

(b) if¢p : R — S is a ring homomorphism, if I is the kernel of ¢, and if 7 : R — ? is
the natural map 7 (r) = r+1, then there exists a one-to-one ring homomorphism
Y % — S such that ¢ o = 9. Pictorially, if we have maps ¥ and 7 as shown,

RV .5

|

R

T
then there exists a diagonal map ¢ : ? — S such that the diagram commutes.
If, in addition, v is a surjection (onto), then ¢ is an isomorphism (one-to-one
and onto).
e Corollary 1.25.2: (didn’t do) If K/F and E/F are field extensions, p(X) € F[X]
is irreducible and o € K, § € E satisfy p(a) = 0 = p(5), then there exists an F-
isomorphism ¢ : F(a) 5 F (). To prove this, just take ¢ = ¢z 0 @, !, where the
isomorphisms ¢, and g are given by part (2) of Theorem 1.25.

F(a) = Flo] 25 Fl2] 2% F[8) = F(8).

e Examples 1.25.3: For F' = R and p(X) = X? + 1, the construction in Theorem
1.25 can be thought of as “creating a square-root for —17”, or, equivalently, a root

for X2 4 1, by setting R = %. Similarly to create a square-root for 2, let
_ _Q[X]
R= ee=IE

e Proposition 1.30: Let E/F be a field extension. These conditions are equiva-

lent:

(1) E/F is finite, i.e. [E: F] < 0.

(2) E/F is algebraic and finitely generated over F, i.e. each element of E is alge-
braic and there exists a finite set a, ..., «, € E such that £ = F(aq,..., ).

(3) There exists a finite set of algebraic (over F') elements aq,...,q, € E such
that B = F(aq,...,an).

e Corollary 1.31: Algebraic Tower of Fields Theorem (Mentioned but didn’t
prove) Let F' C E C K be fields. If K is algebraic over E and F is algebraic over
F, then K is algebraic over F.
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¢ Discussion of roots of unity: Let p be a prime number. Let (, = e™» . Then (,
is a primitive p'* root of unity. In the complex plane with the z-axis real numbers
and the y-axis the pure imaginary numbers, there are p roots of unity, evenly spaced
as p points around the circle 2 + y? = 1, including the point x = 1,y = 0. The
minimal polynomial for ¢, over Q is p(X) = XP~ 1+ + X + 1.

e Lemma 1.41: If p is a prime number then p(X) = XP71 4+ ... + X + 1 is
irreducible over Q; hence [Q(¢p) : Q] =p — 1.

e Exercise: Find [Q(§17,2é) :Q].  Answer: 80.



