• We finished the proof of

Proposition 1.27 $\frac{1}{4}$: Let α be an element of an extension field K of F, with α algebraic over F. Let I be the kernel of the "evaluation" homomorphism $\psi_{\alpha}: F[X] \to F[\alpha]$ by $\psi_{\alpha}(g(X)) = g(\alpha)$. Let p(X) be a monic polynomial in F[X].

- These conditions on $p(X) \in F[X]$ are equivalent:
- (a) $p(\alpha) = 0$ and p(X) has least degree among all *non-zero* polynomials $f(X) \in F[X]$ such that $f(\alpha) = 0$.
- (b) I = p(X)F[X] = (p(X)), that is, p(X) generates the ideal I.
- (c) $p(\alpha) = 0$ and p(X) is irreducible.

• Remark1.27¹/₃: Let α be an element of an extension field K of F such that $f(\alpha) = 0$, for some non-zero $f(X) \in F[X]$. Then:

- (1) $[F(\alpha):F] \leq \text{degee } f(X).$
- (2) $[F(\alpha):F] \leq [K:F]$. Note that [K:F] might be ∞ .

• **Theorem 1.27** $\frac{3}{4}$: Let α be an element of a extension field K of F. These conditions are equivalent:

- (1) α is algebraic.
- (2) $F[\alpha] = F(\alpha)$.
- (3) $F[\alpha]$ is finite-dimensional as a vector space over F.

• The next theorem is related to what the book calls "Stem fields". Given any non-constant polynomial $g(X) \in F[X]$, where F is any field, we can always find an extension field of F in which g(X) has a root. First choose an irreducible factor of g(X); if we can find a root of this irreducible factor, we'll have a root of g(X).

Theorem 1.25: Construction of extension fields with roots. Let F be a field and $p(X) \in F[X]$ a monic irreducible polynomial of degree m. Let I = (p(X)) = p(X)F(X), the ideal of F[X] generated by p(X). Then:

- (1) $F[x] = \frac{F[X]}{(p(X))}$, where x is the coset X + I, is an extension field of degree m over F, and p(x) = 0.
- (2) If K/F is a field extension, and $\alpha \in K$ satisfies $p(\alpha) = 0$, then there exists a field isomorphism $\varphi = \varphi_{\alpha} : F[x] \xrightarrow{\cong} F[\alpha]$ such that $\varphi(x) = \alpha$ and $\varphi(c) = c$ for each $c \in F$. Note that $\varphi((f(x))) = f(\alpha)$ for each $f(X) \in F[X]$.

$$\begin{array}{ccc} F[x] & \xrightarrow{\varphi, \cong} & F[\alpha] \\ \subseteq \uparrow & & \subseteq \uparrow \\ F & \xrightarrow{\operatorname{id}_F} & F \end{array}$$

Then φ_{α} is an *F*-isomorphism: $F[x] \xrightarrow{\cong} F[\alpha]$.

• (We didn't do) Terminology: An F-homomorphism is a field homomorphism $\varphi: K \to E$, where K/F and E/F are field extensions and φ is the identity homomorphism on F, that is, $\varphi|_F$ (= φ restricted to F) is id_F : $F \to F$.

$$\begin{array}{ccc} K & \stackrel{\varphi}{\longrightarrow} & E \\ \subseteq & \uparrow & & \subseteq & \uparrow \\ F & \stackrel{\operatorname{id}_F}{\longrightarrow} & F \end{array}$$

• Example 1.25.1: For the ring $R = \frac{F[X]}{(p(X))} = F[x]$ of Theorem 1.25 with $F = \mathbb{F}_2$ and $p(X) = X^2 + X + 1$, we have (a) R has four elements: $R = \{0, 1, x, 1 + x\}$, and (b) R is a field. We made addition and multiplication tables for R, using the fact that the coset $[X^2] = [X^2 + X^2 + X + 1] = [X + 1].$

• Two useful facts from ring theory: Let R be a commutative ring.

- (a) If I is an ideal of R, then $\frac{R}{I} = \{ \text{ cosets } r + I, \text{ where } r \in R \}$ is also a ring, with inherited $+, \cdot$ from R.
- (b) if $\psi : R \to S$ is a ring homomorphism, if I is the kernel of ψ , and if $\pi : R \to \frac{R}{I}$ is the natural map $\pi(r) = r+I$, then there exists a one-to-one ring homomorphism $\varphi : \frac{R}{I} \to S$ such that $\varphi \circ \pi = \psi$. Pictorially, if we have maps ψ and π as shown,

then there exists a diagonal map $\varphi : \frac{R}{I} \to S$ such that the diagram commutes. If, in addition, ψ is a surjection (onto), then φ is an isomorphism (one-to-one *and* onto).

• Corollary 1.25.2: (didn't do) If K/F and E/F are field extensions, $p(X) \in F[X]$ is irreducible and $\alpha \in K, \beta \in E$ satisfy $p(\alpha) = 0 = p(\beta)$, then there exists an F-isomorphism $\varphi : F(\alpha) \xrightarrow{\cong} F(\beta)$. To prove this, just take $\varphi = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$, where the isomorphisms φ_{α} and φ_{β} are given by part (2) of Theorem 1.25.

$$F(\alpha) = F[\alpha] \xrightarrow{\varphi_{\alpha}^{-1}} F[x] \xrightarrow{\varphi_{\beta}} F[\beta] = F(\beta) \,.$$

• Examples 1.25.3: For $F = \mathbb{R}$ and $p(X) = X^2 + 1$, the construction in Theorem 1.25 can be thought of as "creating a square-root for -1", or, equivalently, a root for $X^2 + 1$, by setting $R = \frac{\mathbb{R}[X]}{(X^2+1)}$. Similarly to create a square-root for 2, let $R = \frac{\mathbb{Q}[X]}{(X^2-2)}$.

• **Proposition 1.30:** Let E/F be a field extension. These conditions are equivalent:

- (1) E/F is finite, i.e. $[E:F] < \infty$.
- (2) E/F is algebraic and finitely generated over F, i.e. each element of E is algebraic and there exists a finite set $\alpha_1, \ldots, \alpha_n \in E$ such that $E = F(\alpha_1, \ldots, \alpha_n)$.
- (3) There exists a finite set of algebraic (over F) elements $\alpha_1, \ldots, \alpha_n \in E$ such that $E = F(\alpha_1, \ldots, \alpha_n)$.

• Corollary 1.31: Algebraic Tower of Fields Theorem (Mentioned but didn't prove) Let $F \subseteq E \subseteq K$ be fields. If K is algebraic over E and E is algebraic over F, then K is algebraic over F.

• Discussion of roots of unity: Let p be a prime number. Let $\zeta_p = e^{\frac{2\pi i}{p}}$. Then ζ_p is a primitive p^{th} root of unity. In the complex plane with the *x*-axis real numbers and the *y*-axis the pure imaginary numbers, there are p roots of unity, evenly spaced as p points around the circle $x^2 + y^2 = 1$, including the point x = 1, y = 0. The minimal polynomial for ζ_p over \mathbb{Q} is $p(X) = X^{p-1} + \cdots + X + 1$.

• Lemma 1.41: If p is a prime number then $p(X) = X^{p-1} + \cdots + X + 1$ is irreducible over \mathbb{Q} ; hence $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p - 1$.

• Exercise: Find $[\mathbb{Q}(\zeta_{17}, 2^{\frac{1}{5}}) : \mathbb{Q}]$. Answer: 80.