• We proved **Proposition 1.20:** Multiplicativity of Degrees (of extension fields). We added just a couple of details to the proof in the book, which is actually rather detailed. We said (many times, and will say many times again) that one should always draw a lattice diagram (graph) showing intermediate fields at vertices, and labeling edges with degrees.

• We proved **Lemma 1.23:** A domain R containing a field F is a field if R is finite dimensional as a vector space over F.

This shows that $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ is a field. (Earlier we showed $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ is spanned by $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ as a \mathbb{Q} -vector space.) Therefore $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

• For an element α of an extension field K of F, one says that α is algebraic over F provided there is a *non-zero* polynomial $f(X) \in F[X]$ having α as a root. If no such polynomial exists, then α is transcendental over F.

• The exponential base e is transcendental over \mathbb{Q} , and the proof is not too hard, roughly speaking, because the power series expansion of e is so sparse. Also, π is transcendental, but the proof is much harder. It is not known whether or not $\frac{e}{\pi}$ is transcendental. In fact, it's not even known whether or not $\frac{e}{\pi} \in \mathbb{Q}$!

• For an element α in a field extension K of F, we pointed out that $F[\alpha] \cong F[X]$ if α is transcendental over F, and hence that $F[\alpha]$ is *properly* contained in $F(\alpha)$. If α is algebraic over F, then $F[\alpha] = F(\alpha)$, by FATSAE (below).

We proved various characterizations of the *minimal polynomial* of an algebraic element:

• **Proposition 1.27** $\frac{1}{4}$: Let α be an element of a field extension K of F with α algebraic over F. Let I be the kernel of the "evaluation" homomorphism $F[X] \to F[\alpha]$ taking g(X) to $g(\alpha)$. Let p(X) be a monic polynomial in F[X]. These conditions on $p(X) \in F[X]$ are equivalent:

- (a) $p(\alpha) = 0$, and p(X) has least degree among all *non-zero* polynomials $f(X) \in F[X]$ such that $f(\alpha) = 0$.
- (b) I = p(X)F[X] = (p(X)), that is, p(X) generates the ideal I.
- (c) $p(\alpha) = 0$ and p(X) is irreducible.

Well, maybe we didn't include (c) among these conditions, but we will do so in our last class, on Thursday, 17 May.

• We proved what we call the "Fundamental Theorem on Simple Algebra Extensions (FTSAE), aka Theorem $1.27\frac{1}{2}$). It covers various things in the book (e.g., "stem fields") that seem to be a bit scattered.

• Theorem 1.27 $\frac{1}{2}$ FTSAE: Let α be an element of an extension field K of F. Assume α is algebraic over F, and let p(X) be a monic polynomial such that (i) $p(\alpha) = 0$ and (ii) p(X) has least degree among all *non-zero* polynomials having α as a root. Put $n = \deg f(X)$. Then:

- (1) p(X) is unique (and is called the *minimal polynomial* of α over F).
- (2) p(X) is irreducible in F[X].
- (3) The set $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$ is a basis for $F[\alpha]$ as a vector space over F.
- (4) For a polynomial $g(X) \in F[X]$, we have $g(\alpha) = 0 \iff p(X) \mid g(X)$.
- (5) $F[\alpha]$ is a field, and so $F[\alpha] = F(\alpha)$.
- (6) $[F(\alpha) : F] = n.$

Of course item (5) follows from Lemma 1.23, but we gave another (constructive) proof, using the fact that the GCD of two gadgets is a linear combination of the gadgets. Thus one can find inverses constructively, using the Euclidean Algorithm.