These excercises are due July 21, 2017, at 10 pm. Nepal time. Please, send them to nap@rnta.eu, to laurageatti@gmail.com and schoof.rene@gmail.com. Contact us if you have any question!

1. Let p be a prime and let f be an irreducible degree n polynomial in $\mathbf{F}_p[X]$. Show that the Galois group of f is contained in the alternating group A_n if and only if n is odd.

Sol.: The Galois group of the splitting field of f is a cyclic group of order n, generated by the Frobenius automorphism. It can be identified with the group $\langle (12...n) \rangle$ in S_n . One has that (12...n) is even, and therefore contained in A_n , if and only if n is odd.

- 2. Let H be a transitive subgroup of the symmetric group S_n . Suppose that H contains a 2-cycle and an (n-1)-cycle. Show that $H = S_n$. (See Milne Lemma 4.32)
- 3. Determine the Galois groups over \mathbf{Q} of the polynomials (they are all irreducible)

$$x^4 - 10x^2 + 1$$
, $x^4 - 8x^2 + 3$, $x^4 - 2x^2 + 25$.

Sol.: (a) Since $f(x) = x^4 - 10x^2 + 1$ irreducible over \mathbf{Q} , its Galois group is a transitive subgroup of S_4 and is contained in A_4 (one has $disc(f) = 147456 = (384)^2$, which is a square). Its resolvent cubic is $g(x) = x^3 + 10x^2 - 4x - 40 = (x - 2)(x + 2)(x + 10)$ is completely reducible over \mathbf{Q} . By the classification, $G_f = V_4$.

Remarks. The resolvent cubic g is completely reducible over \mathbf{Q} : consequently $\mathbf{Q}_g = \mathbf{Q}$. On the other hand, to each of the three subgroups of V_4

$$H_1 = \langle 1, (12)(34) \rangle, \quad H_2 = \langle 1, (13)(24) \rangle, \quad H_3 = \langle 1, (14)(23) \rangle$$

there is associated an intermediate quadratic extension of \mathbf{Q}

$$\mathbf{Q} \subset \mathbf{Q}_f^{H_i} \subset \mathbf{Q}_f, \qquad i = 1, 2, 3.$$

Denote by

$$\alpha_1 = \sqrt{5 + 2\sqrt{6}}, \quad \alpha_2 = -\sqrt{5 + 2\sqrt{6}}, \quad \alpha_3 = \sqrt{5 - 2\sqrt{6}}, \quad \alpha_4 = -\sqrt{5 - 2\sqrt{6}}$$

the four roots of f and by

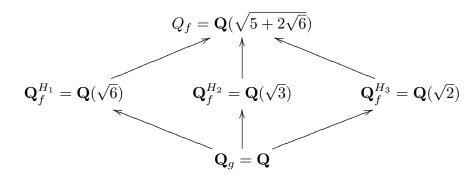
$$\alpha := \alpha_1 \alpha_2 + \alpha_3 \alpha_4, \quad \beta := \alpha_1 \alpha_3 + \alpha_2 \alpha_4, \quad \gamma := \alpha_1 \alpha_4 + \alpha_2 \alpha_3,$$

the roots of g.

Consider $\mathbf{Q}(\alpha_1\alpha_2) = \mathbf{Q}(\sqrt{6})$. This is clearly an H_1 -invariant quadratic extension of \mathbf{Q} , contained in $\mathbf{Q}_f = \mathbf{Q}(\sqrt{5+2\sqrt{6}}, \sqrt{5-2\sqrt{6}})$. More precisely, $\mathbf{Q}_f = \mathbf{Q}(\sqrt{5+2\sqrt{6}})$, since $(5+2\sqrt{6})(5-2\sqrt{6}) = 1$, which is a square in \mathbf{Q} and therefore in $\mathbf{Q}(\sqrt{6})$.

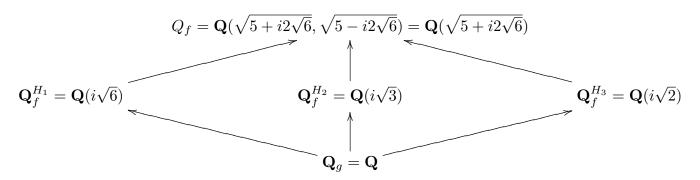
Next consider the quantities $(\alpha_1 + \alpha_3)$ and $(\alpha_2 + \alpha_4)$, which are H_2 -invariant and satisfy the degree two equation $Y^2 + (\alpha + \gamma) = Y^2 - 12 = 0$. This means that $\mathbf{Q}(\sqrt{3})$ is an H_2 -invariant quadratic extension of \mathbf{Q} , contained in $Q_f = \mathbf{Q}(\sqrt{5 + 2\sqrt{6}})$ (note that $(5+2\sqrt{6})(5-2\sqrt{6}) = 1$, which is a square in \mathbf{Q} , is also a square in $\mathbf{Q}(\sqrt{3})$).

Finally consider the quantities $(\alpha_1 + \alpha_4)$ and $(\alpha_2 + \alpha_3)$, which are H_3 -invariant and satisfy the degree two equation $Y^2 + (\alpha + \beta) = Y^2 - 8 = 0$. This means that $\mathbf{Q}(\sqrt{2})$ is an H_3 -invariant quadratic extension of \mathbf{Q} , contained in $Q_f = \mathbf{Q}(\sqrt{5 + 2\sqrt{6}})$ (note that $(5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 1$, which is a square in \mathbf{Q} , is also a square in $\mathbf{Q}(\sqrt{2})$).



(c) The discriminant of $f(x) = x^4 - 2x^2 + 25$ is equal to $3686400 = (1920)^2$, hence G_f is a transitive subgroup of S_4 , contained in A_4 . The resolvent cubic of f is $g(x) = x^3 + 2x^2 - 100x - 200 = (x+10)(x-10)(x+2)$, which is completely reducible over **Q**. By the classification, $G_f = A_4$.

As in the previous case we have a diagram as follows:



(b) The discriminant of $f(x) = x^4 - 8x^2 + 3$ is equal to 129792, which is not a square. Hence G_f is a transitive subgroup of S_4 , not contained in A_4 . Its resolvent cubic is $g(x) = x^3 + 8x^2 - 12x - 96 = (x+8)(x^2 - 12)$. In this case we have to decide whether $G_f \cong C_4$ or $G_f \cong D_4$; equivalently whether the degree $[\mathbf{Q}_f : \mathbf{Q}_g]$ is 2 or 4.

Denote by

$$\alpha_1 = \sqrt{4 + \sqrt{13}}, \quad \alpha_2 = -\sqrt{4 + \sqrt{13}}, \quad \alpha_3 = \sqrt{4 - \sqrt{13}}, \quad \alpha_4 = -\sqrt{4 - \sqrt{13}}$$

the four roots of f and by

$$\alpha := \alpha_1 \alpha_2 + \alpha_3 \alpha_4 = -8, \quad \beta := \alpha_1 \alpha_3 + \alpha_2 \alpha_4 = 2\sqrt{3}, \quad \gamma := \alpha_1 \alpha_4 + \alpha_2 \alpha_3 = -2\sqrt{3},$$

the roots of g.

We have $\mathbf{Q}_f = \mathbf{Q}(\sqrt{4 + \sqrt{13}}, \sqrt{4 - \sqrt{13}})$ and $\mathbf{Q}_g = \mathbf{Q}(\sqrt{3})$. The fields $\mathbf{Q}((\alpha_1 + \alpha_3), (\alpha_2 + \alpha_4))$ and $\mathbf{Q}((\alpha_1 + \alpha_4), (\alpha_2 + \alpha_3))$ are intermediate extensions: they are between \mathbf{Q}_g and \mathbf{Q}_f . One computes that $\mathbf{Q}((\alpha_1 + \alpha_3), (\alpha_2 + \alpha_4)) = \mathbf{Q}(\sqrt{8 + 2\sqrt{3}})$ and $\mathbf{Q}((\alpha_1 + \alpha_4), (\alpha_2 + \alpha_3)) = \mathbf{Q}(\sqrt{8 - 2\sqrt{3}})$. The numbers $8 \pm 2\sqrt{3}$ are not squares in $\mathbf{Q}(\sqrt{3})$, because their norms are equal to 52, which is not a square in \mathbf{Q} . This shows that both fields are degree 2 extensions of $\mathbf{Q}(\sqrt{3})$. To see that they are *distinct*, we observe that the product $(8 + 2\sqrt{3})(8 - 2\sqrt{3}) = 52$ is not a square in $\mathbf{Q}(\sqrt{3})$ either. Indeed, the equation $(x + y\sqrt{3})^2 = 52$ has no solutions $x, y \in \mathbf{Q}$. This proves that G_f cannot be isomorphic to C_4 , but it is necessarily isomorphic to D_4 .

- 4. Let $f = x^5 x + 3 \in \mathbb{Z}[X]$. This is an irreducible polynomial.
 - (a) Show that f has three linear factors modulo 3.
 - (b) Show that f is irreducible modulo 5.
 - (c) Show that the Galois group of f over \mathbf{Q} is S_5 .

Sol.: (a) In $\mathbf{F}_3[x]$, the polynomial becomes

$$f(x) = x^5 - x = x(x - 1)(x + 1)(x^2 + 1),$$

where $x^2 + 1$ is an irreducible factor.

(b) In $\mathbf{F}_5[x]$ the polynomial f is irreducible: it has no linear factors, nor degree 2 factors.... (c) By (a) and (b), the Galois group G_f of f over \mathbf{Q} contains a 2-cycle and a 5-cycle. Now Lemma 4.32 in [Milne] ensures that $G_f \cong S_5$.

- 5. Let $g = x^5 + 8x + 3 \in \mathbb{Z}[X]$. This is an irreducible polynomial.
 - (a) Show that f has three linear factors modulo 3.
 - (b) Show that f is the product of a linear polynomial and an irreducible polynomial of degree 4 modulo 2.
 - (c) Show that the Galois group of f over \mathbf{Q} is S_5 .

Sol.: (a) In $\mathbf{F}_3[x]$ the polynomial g becomes $g(x) = x^5 - x = x(x-1)(x+1)(x^2+1)$, where $x^2 + 1$ is an irreducible factor.

(b) In $\mathbf{F}_2[x]$ the polynomial g becomes $g(x) = x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$. The degree 4 factor is irreducible because 2 is a primitive root in \mathbf{F}_5 (cf. Excercises 1, n.6).

(c) By (a) and (b), the Galois group G_f of f over \mathbf{Q} contains a 2-cycle and a 4-cycle. Now Lemma 4.32 in [Milne] ensures that $G_f \cong S_5$.

6. Let **K** be a field. Show that the Galois group of $X^n - 1$ over **K** is commutative (Hint: without loss of generality one may assume that the characteristic of **K** does not divide n. Show that any automorphism σ of the splitting field \mathbf{K}_f of $X^n - 1$ is determined by $\sigma(\zeta)$, where ζ is a primitive n-th root of unity in \mathbf{K}_f). Sol.: Assume that char(K) = p, with p prime and that $n = mp^r$, with gcd(p, m) = 1. Then $X^n - 1 = X^{mp^r} - 1 = (X^m - 1)^{p^r}$. This means that the splitting field of $X^n - 1$ is the same as the splitting field of $f(X) = X^m - 1$. Hence, without loss of generality we may assume that the characteristic of \mathbf{K} does not divide n. The roots of f form a finite and hence cyclic subgroup of \mathbf{K}^* . So they are $\xi, \xi^2, \ldots, \xi^m = 1$, where ξ is a generator. Hence $\mathbf{K}_f = \mathbf{K}(\xi)$. Any automorphism $\sigma \in Aut(\mathbf{K}_f/\mathbf{K})$ is determined by $\sigma(\xi)$ (being an automorphism implies $\sigma(\xi^k) = \sigma(\xi)^k$) and must be of the form $\sigma(\xi) = \xi^r$, for some $r \in \mathbf{Z}$. Since also ξ^r must be a primitive root of 1, then gcd(r,m) = 1. It follows that the map that sends σ to r is a well defined group homomorphism $\psi : G_f \longrightarrow \mathbf{Z}_n^*$ Since ψ is injective, it follows that G_f is abelian.

7. (Optional) The Möbius function $\mu: \mathbf{N} \longrightarrow \{-1, 0, +1\}$ is defined by

 $\mu(n) = \begin{cases} (-1)^r; & \text{if } n \text{ is a product of } r \text{ distinct primes,} \\ 0; & \text{otherwise.} \end{cases}$

- (a) Compute $\mu(10)$, $\mu(20)$ and $\mu(30)$.
- (b) Show that μ is multiplicative, i.e. show that $\mu(nm) = \mu(n)\mu(m)$ if gcd(n,m) = 1.
- (c) Let $f(n) = \sum_{d|n} \mu(d)$. Here the summation runs over the positive divisors d of $n \in \mathbf{N}$. Show that f is also a multiplicative function.
- (d) (Möbius inversion) Suppose that the sequences a_n, b_n satisfy $a_n = \sum_{d|n} b_d$ for all $n \ge 1$. Show that $b_n = \sum_{d|n} \mu(\frac{n}{d}) a_d$

Sol.: (a) $10 = 2 \cdot 5$ and $\mu(10) = (-1)^2 = 1$; $20 = 2^2 \cdot 5$ and $\mu(20) = 0$; $30 = 2 \cdot 3 \cdot 5$ and $\mu(30) = (-1)^3 = -1$.

(b) If either n or m contains a square, then so does nm and $\mu(nm) = 0 = \mu(n)\mu(m)$. If both n and m are square free, then nm is square free if and only if gcd(n,m) = 1. In this case the prime factors of nm are the disjoint union of the prime factors of n and those of m, implying that $\mu(nm) = \mu(n)\mu(m)$.

(c) If gcd(n,m) = 1, then the divisors d of nm are of the form d_1d_2 , where d_1 is a divisor of n and d_2 is a divisor of m, and $gcd(d_1, d_2) = 1$. Then, from $\mu(d_1d_2) = \mu(d_1)\mu(d_2)$, we obtain

$$f(nm) = \sum_{d|nm} \mu(d) = \sum_{\substack{d_1d_2|nm\\d_1|n, d_2|m}} \mu(d_1d_2) = \sum_{d_1|n} \mu(d_1) \sum_{d_2|m} \mu(d_2).$$

(d) We evaluate $\sum_{d|n} \mu(\frac{n}{d}) a_d$. It is equal to

$$\sum_{d|n} \mu(\frac{n}{d}) \sum_{e|d} b_e$$

Changing the order of summation we get

$$\sum_{e|n} \sum_{e|d|n} \mu(\frac{n}{d}) b_e$$

In the second sum, d runs over the multiples of e that divide n. Writing d' = d/e, this becomes a sum over the divisors d' of n/e. We get

$$\sum_{e|n} \left(\sum_{d'|\frac{n}{e}} \mu(\frac{n/e}{d'}) \right) b_e.$$

Since $\sum_{d|m} \mu(\frac{n}{d}) = \sum_{d|m} \mu(d)$ is equal to 1 for m = 1 and zero otherwise, we were that the second sum only gives a non-zero contribution for e = n. In other words, the sum is equal to b_n as required.

(By part (c) it suffices to check that $\sum_{d|m} \mu(d)$ is zero, for m > 1 a power of a prime)

- 8. (Optional) Let p be a prime and let N_n denote the number of irreducible polynomials in $\mathbf{F}_p[X]$ of degree n.
 - (a) Compute N_4 and N_6 for any finite field \mathbf{F}_p .
 - (b) Show that $\sum_{d|n} dN_d = p^n$ for every $n \ge 1$.
 - (c) Show that $N_n = \frac{1}{n} \sum_{d|n} \mu(\frac{n}{d}) p^d$. (Use previous exercise)

Sol.: We can count irreducible polynomials of degree n in $\mathbf{F}_p[X]$ by counting the elements of \mathbf{F}_{p^n} whose minimum polynomial has degree n and dividing the result by n (every such polynomial has n zeros in \mathbf{F}_{p^n}). Recall that the elements of \mathbf{F}_{p^n} whose minimum polynomial has degree less than n are those lying in proper subfields of \mathbf{F}_{p^n} , namely in fields \mathbf{F}_{p^d} , with d|n.

(a)

$$N_4 = \frac{1}{4} (\#\mathbf{F}_{p^4} - \#\mathbf{F}_{p^2}) = \frac{1}{4} (p^4 - p^2);$$
$$N_6 = \frac{1}{6} (\#\mathbf{F}_{p^6} - \#\mathbf{F}_{p^2} - \#\mathbf{F}_{p^3} + \#\mathbf{F}_p) = \frac{1}{6} (p^6 - p^2 - p^3 + p);$$

(b) The elements of \mathbf{F}_{p^n} can be subdivided according to the degree d of their minimum polynomial (necessarily a divisor of n). The number of elements in \mathbf{F}_{p^n} whose minimum polynomial has degree d is d times the number of irreducible polynomials of degree d in $\mathbf{F}_p[X]$. Hence

$$p^n = \sum_{d|n} dN(d).$$

(c) Let $a_n = p^n$ and $b_n = nN(n)$. By part (b) we have $a_n = \sum_{d|n} b_d$ and hence by the previous exercice $b_n = \sum_{d|n} \mu(\frac{n}{d}) a_d$.