
NAP 2017. Module 4. Homework 2 Friday, July 14, 2017.

These excercises are due July 21, 2017, at 10 pm. Nepal time. Please, send
them to nap@rnta.eu, to laurageatti@gmail.com and schoof.rene@gmail.com.
Contact us if you have any question!

1. Let p be a prime and let f be an irreducible degree n polynomial in Fp[X]. Show that
the Galois group of f is contained in the alternating group An if and only if n is odd.

Sol.: The Galois group of the splitting field of f is a cyclic group of order n, generated by
the Frobenius automorphism. It can be identified with the group 〈(12 . . . n)〉 in Sn. One
has that (12 . . . n) is even, and therefore contained in An, if and only if n is odd.

2. Let H be a transitive subgroup of the symmetric group Sn. Suppose that H contains
a 2-cycle and an (n− 1)-cycle. Show that H = Sn. (See Milne Lemma 4.32)

3. Determine the Galois groups over Q of the polynomials (they are all irreducible)

x4 − 10x2 + 1, x4 − 8x2 + 3, x4 − 2x2 + 25.

Sol.: (a) Since f(x) = x4 − 10x2 + 1 irreducible over Q, its Galois group is a transitive
subgroup of S4 and is contained in A4 (one has disc(f) = 147456 = (384)2, which is a
square). Its resolvent cubic is g(x) = x3 + 10x2 − 4x − 40 = (x − 2)(x + 2)(x + 10) is
completely reducible over Q. By the classification, Gf = V4.

Remarks. The resolvent cubic g is completely reducible over Q: consequently Qg = Q.
On the other hand, to each of the three subgroups of V4

H1 = 〈1, (12)(34)〉, H2 = 〈1, (13)(24)〉, H3 = 〈1, (14)(23)〉

there is associated an intermediate quadratic extension of Q

Q ⊂ QHi

f ⊂ Qf , i = 1, 2, 3.

Denote by

α1 =

√
5 + 2

√
6, α2 = −

√
5 + 2

√
6, α3 =

√
5− 2

√
6, α4 = −

√
5− 2

√
6

the four roots of f and by

α := α1α2 + α3α4, β := α1α3 + α2α4, γ := α1α4 + α2α3,

the roots of g.

Consider Q(α1α2) = Q(
√

6). This is clearly an H1-invariant quadratic extension of Q,

contained in Qf = Q(
√

5 + 2
√

6,
√

5− 2
√

6). More precisely, Qf = Q(
√

5 + 2
√

6), since
(5 + 2

√
6)(5− 2

√
6) = 1, which is a square in Q and therefore in Q(

√
6).
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Next consider the quantities (α1+α3) and (α2+α4), which are H2-invariant and satisfy the
degree two equation Y 2+(α+γ) = Y 2−12 = 0. This means that Q(

√
3) is an H2-invariant

quadratic extension of Q, contained inQf = Q(
√

5 + 2
√

6) (note that (5+2
√

6)(5−2
√

6) =
1, which is a square in Q, is also a square in Q(

√
3)).

Finally consider the quantities (α1 +α4) and (α2 +α3), which are H3-invariant and satisfy
the degree two equation Y 2 + (α + β) = Y 2 − 8 = 0. This means that Q(

√
2) is an

H3-invariant quadratic extension of Q, contained in Qf = Q(
√

5 + 2
√

6) (note that (5 +
2
√

6)(5− 2
√

6) = 1, which is a square in Q, is also a square in Q(
√

2)).

Qf = Q(
√

5 + 2
√

6)

QH1

f = Q(
√

6)

66llllllllllllll
QH2

f = Q(
√

3)

OO

QH3

f = Q(
√

2)

iiRRRRRRRRRRRRRR

Qg = Q

55kkkkkkkkkkkkkk

OOiiRRRRRRRRRRRRRR

(c) The discriminant of f(x) = x4 − 2x2 + 25 is equal to 3686400 = (1920)2, hence
Gf is a transitive subgroup of S4, contained in A4. The resolvent cubic of f is g(x) =
x3 + 2x2− 100x− 200 = (x+ 10)(x− 10)(x+ 2), which is completely reducible over Q. By
the classification, Gf = A4.

As in the previous case we have a diagram as follows:

Qf = Q(
√

5 + i2
√

6,
√

5− i2
√

6) = Q(
√

5 + i2
√

6)

QH1

f = Q(i
√

6)

33gggggggggggggggggggggg
QH2

f = Q(i
√

3)

OO

QH3

f = Q(i
√

2)

kkWWWWWWWWWWWWWWWWWWWWWW

Qg = Q

33ggggggggggggggggggggggggg

OOkkWWWWWWWWWWWWWWWWWWWWWWWWW

(b) The discriminant of f(x) = x4 − 8x2 + 3 is equal to 129792, which is not a square.
Hence Gf is a transtive subgroup of S4, not contained in A4. Its resolvent cubic is g(x) =
x3 + 8x2 − 12x− 96 = (x+ 8)(x2 − 12). In this case we have to decide whether Gf

∼= C4

or Gf
∼= D4; equivalently whether the degree [Qf : Qg] is 2 or 4.

Denote by

α1 =

√
4 +
√

13, α2 = −
√

4 +
√

13, α3 =

√
4−
√

13, α4 = −
√

4−
√

13

the four roots of f and by

α := α1α2 + α3α4 = −8, β := α1α3 + α2α4 = 2
√

3, γ := α1α4 + α2α3 = −2
√

3,

2



the roots of g.

We have Qf = Q(
√

4 +
√

13,
√

4−
√

13) and Qg = Q(
√

3).
The fields Q((α1 +α3), (α2 +α4)) and Q((α1 +α4), (α2 +α3)) are intermediate extensions:

they are between Qg and Qf . One computes that Q((α1+α3), (α2+α4)) = Q(
√

8 + 2
√

3)

and Q((α1 + α4), (α2 + α3)) = Q(
√

8− 2
√

3). The numbers 8 ± 2
√

3 are not squares in
Q(
√

3), because their norms are equal to 52, which is not a square in Q. This shows that
both fields are degree 2 extensions of Q(

√
3). To see that they are distinct, we observe that

the product (8+2
√

3)(8−2
√

3) = 52 is not a square in Q(
√

3) either. Indeed, the equation
(x+ y

√
3)2 = 52 has no solutions x, y ∈ Q. This proves that Gf cannot be isomorphic to

C4, but it is necessarily isomorphic to D4.

4. Let f = x5 − x+ 3 ∈ Z[X]. This is an irreducible polynomial.
(a) Show that f has three linear factors modulo 3.
(b) Show that f is irreducible modulo 5.
(c) Show that the Galois group of f over Q is S5.

Sol.: (a) In F3[x], the polynomial becomes

f(x) = x5 − x = x(x− 1)(x+ 1)(x2 + 1),

where x2 + 1 is an irreducible factor.

(b) In F5[x] the polynomial f is irreducible: it has no linear factors, nor degree 2 factors....

(c) By (a) and (b), the Galois group Gf of f over Q contains a 2-cycle and a 5-cycle. Now
Lemma 4.32 in [Milne] ensures that Gf

∼= S5.

5. Let g = x5 + 8x+ 3 ∈ Z[X]. This is an irreducible polynomial.
(a) Show that f has three linear factors modulo 3.
(b) Show that f is the product of a linear polynomial and an irreducible polynomial

of degree 4 modulo 2.
(c) Show that the Galois group of f over Q is S5.

Sol.: (a) In F3[x] the polynomial g becomes g(x) = x5−x = x(x−1)(x+1)(x2 +1), where
x2 + 1 is an irreducible factor.

(b) In F2[x] the polynomial g becomes g(x) = x5− 1 = (x− 1)(x4 + x3 + x2 + x+ 1). The
degree 4 factor is irreducible because 2 is a primitive root in F5 (cf. Excercises 1, n.6).

(c) By (a) and (b), the Galois group Gf of f over Q contains a 2-cycle and a 4-cycle. Now
Lemma 4.32 in [Milne] ensures that Gf

∼= S5.

6. Let K be a field. Show that the Galois group of Xn− 1 over K is commutative (Hint:
without loss of generality one may assume that the characteristic of K does not divide
n. Show that any automorphism σ of the splitting field Kf of Xn − 1 is determined
by σ(ζ), where ζ is a primitive n-th root of unity in Kf ).
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Sol.: Assume that char(K) = p, with p prime and that n = mpr, with gcd(p,m) = 1.
Then Xn − 1 = Xmpr − 1 = (Xm − 1)p

r

. This means that the splitting field of Xn − 1
is the same as the splitting field of f(X) = Xm − 1. Hence, without loss of generality we
may assume that the characteristic of K does not divide n. The roots of f form a finite
and hence cyclic subgroup of K∗. So they are ξ, ξ2, . . . , ξm = 1, where ξ is a generator.
Hence Kf = K(ξ). Any automorphism σ ∈ Aut(Kf/K) is determined by σ(ξ) (being an
automoprhism implies σ(ξk) = σ(ξ)k) and must be of the form σ(ξ) = ξr, for some r ∈ Z.
Since also ξr must be a primitive root of 1, then gcd(r,m) = 1. It follows that the map
that sends σ to r is a well defined group homomorphism ψ : Gf −→ Z∗n Since ψ is injective,
it follows that Gf is abelian.

7. (Optional) The Möbius function µ : N −→ {−1, 0,+1} is defined by

µ(n) =

{
(−1)r; if n is a product of r distinct primes,
0; otherwise.

(a) Compute µ(10), µ(20) and µ(30).
(b) Show that µ is multiplicative, i.e. show that µ(nm) = µ(n)µ(m) if gcd(n,m) = 1.
(c) Let f(n) =

∑
d|n µ(d). Here the summation runs over the positive divisors d of

n ∈ N. Show that f is also a multiplicative function.
(d) (Möbius inversion) Suppose that the sequences an, bn satisfy an =

∑
d|n bd for

all n ≥ 1. Show that bn =
∑

d|n µ(n
d )ad

Sol.: (a) 10 = 2 · 5 and µ(10) = (−1)2 = 1;
20 = 22 · 5 and µ(20) = 0;
30 = 2 · 3 · 5 and µ(30) = (−1)3 = −1.

(b) If either n or m contains a square, then so does nm and µ(nm) = 0 = µ(n)µ(m). If
both n and m are square free, then nm is square free if and only if gcd(n,m) = 1. In this
case the prime factors of nm are the disjoint union of the prime factors of n and those of
m, implying that µ(nm) = µ(n)µ(m).

(c) If gcd(n,m) = 1, then the divisors d of nm are of the form d1d2, where d1 is a divisor
of n and d2 is a divisor of m, and gcd(d1, d2) = 1. Then, from µ(d1d2) = µ(d1)µ(d2), we
obtain

f(nm) =
∑
d|nm

µ(d) =
∑

d1d2|nm

d1|n, d2|m

µ(d1d2) =
∑
d1|n

µ(d1)
∑
d2|m

µ(d2).

(d) We evaluate
∑

d|n µ(n
d )ad. It is equal to∑

d|n

µ(
n

d
)
∑
e|d

be.

Changing the order of summation we get∑
e|n

∑
e|d|n

µ(
n

d
)be.
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In the second sum, d runs over the multiples of e that divide n. Writing d′ = d/e, this
becomes a sum over the divisors d′ of n/e. We get

∑
e|n

∑
d′|ne

µ(
n/e

d′
)

 be.

Since
∑

d|m µ(n
d ) =

∑
d|m µ(d) is equal to 1 for m = 1 and zero otherwise, we wee that the

second sum only gives a non-zero contribution for e = n. In other words, the sum is equal
to bn as required.

(By part (c) it suffices to check that
∑

d|m µ(d) is zero, for m > 1 a power of a prime)

8. (Optional) Let p be a prime and let Nn denote the number of irreducible polynomials
in Fp[X] of degree n.
(a) Compute N4 and N6 for any finite field Fp.
(b) Show that

∑
d|n dNd = pn for every n ≥ 1.

(c) Show that Nn = 1
n

∑
d|n µ(n

d )pd. (Use previous exercise)

Sol.: We can count irreducible polynomials of degree n in Fp[X] by counting the elements
of Fpn whose minimum polynomial has degree n and dividing the result by n (every
such polynomial has n zeros in Fpn). Recall that the elements of Fpn whose minimum
polynomial has degree less than n are those lying in proper subfields of Fpn , namely in
fields Fpd , with d|n.

(a)

N4 =
1

4
(#Fp4 −#Fp2) =

1

4
(p4 − p2);

N6 =
1

6
(#Fp6 −#Fp2 −#Fp3 + #Fp) =

1

6
(p6 − p2 − p3 + p);

(b) The elements of Fpn can be subdivided according to the degree d of their minimum
polynomial (necessarily a divisor of n). The number of elements in Fpn whose minimum
polynomial has degree d is d times the number of irreducible polynomials of degree d in
Fp[X]. Hence

pn =
∑
d|n

dN(d).

(c) Let an = pn and bn = nN(n). By part (b) we have an =
∑

d|n bd and hence by the

previous exercice bn =
∑

d|n µ(n
d )ad.
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