NAP 2017. Module 4. Homework 2  Friday, July 14, 2017.

These excercises are due July 21, 2017, at 10 pm. Nepal time. Please, send
them to nap@rnta.eu, to laurageatti@gmail.com and schoof.rene@gmail.com.
Contact us if you have any question!

1. Let p be a prime and let f be an irreducible degree n polynomial in F,[X]. Show that
the Galois group of f is contained in the alternating group A, if and only if n is odd.

Sol.: The Galois group of the splitting field of f is a cyclic group of order n, generated by
the Frobenius automorphism. It can be identified with the group ((12...n)) in S,,. One
has that (12...n) is even, and therefore contained in A, if and only if n is odd.

2. Let H be a transitive subgroup of the symmetric group Sy,. Suppose that H contains
a 2-cycle and an (n — 1)-cycle. Show that H = S,,. (See Milne Lemma 4.32)

3. Determine the Galois groups over Q of the polynomials (they are all irreducible)

zt — 1022 + 1, zt —82% + 3, zt — 222 + 25.

Sol.: (a) Since f(z) = 2* — 1022 + 1 irreducible over Q, its Galois group is a transitive
subgroup of Sy and is contained in A4 (one has disc(f) = 147456 = (384)2, which is a
square). Its resolvent cubic is g(z) = 23 + 102? — 42 — 40 = (z — 2)(z + 2)(x + 10) is
completely reducible over Q. By the classification, Gy = V.

Remarks. The resolvent cubic g is completely reducible over Q: consequently Q, = Q.
On the other hand, to each of the three subgroups of V4

Hy =(1,(12)(34)), Hz=(1,(13)(24)), Hs=(1,(14)(23))
there is associated an intermediate quadratic extension of Q

QCcQficQ i=123

Denote by

a1 =\/54+2V6, as=—\/5+2V6, as=1\/5-2V6, as=-\5-2V6

the four roots of f and by
o= apan +ozoy,  fri=oaias ooy, Y= apag + ogos,

the roots of g.
Consider Q(aiaz) = Q(v/6). This is clearly an Hi-invariant quadratic extension of Q,

contained in Qf = Q(\/5 +2v6,/5 — 2v/6). More precisely, Q; = Q(v/5 + 2v/6), since
(54 2v6)(5 — 2¢/6) = 1, which is a square in Q and therefore in Q(+/6).
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Next consider the quantities (a3 +a3) and (s +ay), which are Ha-invariant and satisfy the
degree two equation Y2+ (a+v) = Y2—12 = 0. This means that Q(v/3) is an Hy-invariant
quadratic extension of Q, contained in Q; = Q(v/5 + 2v/6) (note that (5+2v/6)(5—2v6) =
1, which is a square in Q, is also a square in Q(+/3)).

Finally consider the quantities (a1 +ay4) and (g + a3), which are Hs-invariant and satisfy
the degree two equation Y2 + (o + 8) = Y2 — 8 = 0. This means that Q(v/2) is an
Hs-invariant quadratic extension of Q, contained in Q; = Q(v/5 + 2v/6) (note that (5 +
21/6)(5 — 2¢/6) = 1, which is a square in Q, is also a square in Q(v/2)).

Qs = Q(V5 +2V6)

i

Q" = Q(v6) Qf* = Q(v3) Q" = Q(v2)

/

(c) The discriminant of f(z) = z* — 22% + 25 is equal to 3686400 = (1920)2, hence
Gy is a transitive subgroup of S4, contained in A4. The resolvent cubic of f is g(z) =
23 4+ 222 — 1002 — 200 = (z + 10)(z — 10)(x + 2), which is completely reducible over Q. By

the classification, G = Aj.

/

As in the previous case we have a diagram as follows:

Qs = Q(V5 +i2V6, V5 — i2v/6) = Q(V/5 + i2V/6)

/ \

Q" = Q(iV/6) Q" = Q(iv3) Q" = Q(iv2)

(b) The discriminant of f(x) = % — 822 + 3 is equal to 129792, which is not a square.

Hence G is a transtive subgroup of Sy, not contained in Ay4. Its resolvent cubic is g(z) =
x3 4+ 822 — 122 — 96 = (z + 8)(z% — 12). In this case we have to decide whether G = C,

or Gy = Dy; equivalently whether the degree [Qf : Q] is 2 or 4.
Denote by

alz\/4+\/ﬁ, 052:—\/4+\/E, a;:,z\/él—x/ﬁ, a4:—\/4—\/ﬁ

the four roots of f and by
a:=qaiag +azay = —8, [ :=aiaz+ asay = 2\/5, V= oy + aoas = —2\/§,
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the roots of g.

We have Q; = Q(vV4+v13,v4 — V13) and Q, = Q(v/3).

The fields Q((a1 +a3), (g +ay4)) and Q((a1 +ay), (az + a3)) are intermediate extensions:
they are between Q, and Q. One computes that Q((a1 +a3z), (e +a4)) = Q(V/8 + 2v/3)
and Q((a1 + o), (a2 + a3)) = Q(V/8 — 2v/3). The numbers 8 + 2v/3 are not squares in
Q(\/§), because their norms are equal to 52, which is not a square in Q. This shows that
both fields are degree 2 extensions of Q(v/3). To see that they are distinct, we observe that
the product (8+2v/3)(8 —2v/3) = 52 is not a square in Q(+v/3) either. Indeed, the equation
(z + v/3)% = 52 has no solutions z,y € Q. This proves that G ¢ cannot be isomorphic to
Cy, but it is necessarily isomorphic to D,.

4. Let f = 2° — x + 3 € Z[X]. This is an irreducible polynomial.
(a) Show that f has three linear factors modulo 3.
(b) Show that f is irreducible modulo 5.
(¢) Show that the Galois group of f over Q is Ss.

Sol.: (a) In F3[z], the polynomial becomes
flz)=a° —z =a(z - 1)(z +1)(2* + 1),

where 22 + 1 is an irreducible factor.
(b) In F5[x] the polynomial f is irreducible: it has no linear factors, nor degree 2 factors....

(c) By (a) and (b), the Galois group G of f over Q contains a 2-cycle and a 5-cycle. Now
Lemma 4.32 in [Milne] ensures that G = Ss.

5. Let g = 2° + 8x + 3 € Z[X]. This is an irreducible polynomial.
(a) Show that f has three linear factors modulo 3.
(b) Show that f is the product of a linear polynomial and an irreducible polynomial
of degree 4 modulo 2.

(c) Show that the Galois group of f over Q is Ss.

Sol.: (a) In F3[z] the polynomial g becomes g(x) = 2° —x = z(z —1)(z+1)(z*+ 1), where
2?2 + 1 is an irreducible factor.

(b) In Fy[x] the polynomial g becomes g(z) = 2° —1 = (x — 1)(z* + 23 + 22 + 2 +1). The
degree 4 factor is irreducible because 2 is a primitive root in F5 (cf. Excercises 1, n.6).

(c) By (a) and (b), the Galois group G of f over Q contains a 2-cycle and a 4-cycle. Now
Lemma 4.32 in [Milne] ensures that G; = Ss.

6. Let K be a field. Show that the Galois group of X™ — 1 over K is commutative (Hint:
without loss of generality one may assume that the characteristic of K does not divide
n. Show that any automorphism o of the splitting field Ky of X™ — 1 is determined
by 0(C), where ¢ is a primitive n-th root of unity in Ky ).
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Sol.: Assume that char(K) = p, with p prime and that n = mp", with ged(p,m) = 1.
Then X™ —1 = X" —1 = (X™ — 1)?". This means that the splitting field of X" — 1
is the same as the splitting field of f(X) = X™ — 1. Hence, without loss of generality we
may assume that the characteristic of K does not divide n. The roots of f form a finite
and hence cyclic subgroup of K*. So they are &,£2,...,6™ = 1, where ¢ is a generator.
Hence Ky = K(§). Any automorphism o € Aut(K;/K) is determined by o(£) (being an
automoprhism implies o(¢%) = o(€)¥) and must be of the form o(¢) = ¢", for some r € Z.
Since also £ must be a primitive root of 1, then ged(r,m) = 1. It follows that the map
that sends o to r is a well defined group homomorphism 1 : Gy — Z;, Since %) is injective,
it follows that G is abelian.

7. (Optional) The Mébius function p: N — {—1,0,+1} is defined by

(n) = (=1)"; if n is a product of v distinct primes,
) = 0; otherwise.

(a) Compute ;1(10), n(20) and u(30).

(b) Show that p is multiplicative, i.e. show that pu(nm) = p(n)u(m) if ged(n,m) = 1.

(c) Let f(n) =3y, n(d). Here the summation runs over the positive divisors d of
n € N. Show that f is also a multiplicative function.

(d) (Mobius inversion) Suppose that the sequences an,by satisfy an = 3, ba for

all n = 1. Show that by, = 3_,, 1(g)ad

Sol.: (a) 10 =25 and pu(10) = (-1)? = 1;

20 = 22 -5 and u(20) = 0;

30=2-3-5and p(30) = (—1)3 = —1.

(b) If either n or m contains a square, then so does nm and pu(nm) = 0 = p(n)u(m). If
both n and m are square free, then nm is square free if and only if ged(n, m) = 1. In this
case the prime factors of nm are the disjoint union of the prime factors of n and those of
m, implying that p(nm) = pu(n)u(m).

(c) If ged(n,m) = 1, then the divisors d of nm are of the form dyds, where d; is a divisor
of n and ds is a divisor of m, and ged(dy,ds) = 1. Then, from u(dids) = p(dy)p(ds), we

obtain
fm) =" pd) = Y pldidz) =) p(dr) Y plda).

d|lnm dpdg|nm di|n da|m
dy|n, dgo|m

(d) We evaluate >_;, p(5)aq- It is equal to
n
ZM(E) Zbe~
d|n eld

Changing the order of summation we get

>N u(g)be.

eln e|ld|n
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In the second sum, d runs over the multiples of e that divide n. Writing d’ = d/e, this
becomes a sum over the divisors d’ of n/e. We get

S S ) o
eln \d'|Z
Since i, #(5) = 2 41m #(d) is equal to 1 for m = 1 and zero otherwise, we wee that the
second sum only gives a non-zero contribution for e = n. In other words, the sum is equal
to b, as required.

(By part (c) it suffices to check that }_,,, n(d) is zero, for m > 1 a power of a prime)

8. (Optional) Let p be a prime and let N,, denote the number of irreducible polynomials
in Fy,[X] of degree n.
(a) Compute Ny and Ng for any finite field F.
(b) Show that 3_,, dNa = p" for every n > 1.
(c) Show that N, = %de w(2)p?. (Use previous exercise)

Sol.: We can count irreducible polynomials of degree n in F,[X] by counting the elements
of Fy»n whose minimum polynomial has degree n and dividing the result by n (every
such polynomial has n zeros in Fpn). Recall that the elements of Fj,» whose minimum
polynomial has degree less than n are those lying in proper subfields of Fj», namely in
fields F e, with d|n.

(2) 1 1
Ni= J(#Fy = #F2) = 100" — p°);
1 1
No = 6 (#Fpo = #Fp2 = #Fp0 + #F,) = £ (0° =" = " + p);

(b) The elements of F,» can be subdivided according to the degree d of their minimum
polynomial (necessarily a divisor of n). The number of elements in F,» whose minimum
polynomial has degree d is d times the number of irreducible polynomials of degree d in
F,[X]. Hence

p* =Y dN(d).
d|n

(c) Let a, = p" and b, = nN(n). By part (b) we have a, = 3, ba and hence by the
previous exercice b, = > djn P )aa-



