These excercises are due July 12, 2017, at 10 pm. Nepal time. Please, send them to nap@rnta.eu and to laurageatti@gmail.com and schoof.rene@gmail.com. Contact us if you have any question!

1. Let p be a prime. Prove that there are infinitely many irreducible polynomials in $\mathbf{F}_{p}[x]$.

Sol.: For every $n \in \mathbf{N}$, there is a finite field with p^n elements which can be obtained as the splitting field of an irreducible polynomial in \mathbf{F}_p of degree n. Hence there are infinitely many irreducible polynomials in $\mathbf{F}_p[x]$.

2. (a) Prove that the Frobenius automorphism of $\mathbf{F}_5[\sqrt{2}]$ sends $\sqrt{2}$ to $-\sqrt{2}$. (b) Compute the order of $1 - \sqrt{2}$, $2 - \sqrt{2}$, $3 - \sqrt{2}$ in $\mathbf{F}_5[\sqrt{2}]^*$.

Sol.: (a) Set $\alpha := \sqrt{2}$. Then α is a zero of the irreducible quadratic polynomial $x^2 - 2 \in \mathbf{F}_5[x]$. Therefore it satisfies $\alpha^2 = 2$. Let $\phi(x) = x^5$ be the Frobenius automorphism. Then

$$\phi(\alpha) = \alpha^5 = \alpha^2 \alpha^2 \alpha = 4\alpha = -\alpha.$$

(b) Recall that $\mathbf{F}_5[\sqrt{2}]^*$ is a cyclic group of order $24 = 2^3 \cdot 3$, and the order of an element in $\mathbf{F}_5[\sqrt{2}]^*$ has to be a divisor of 24, i.e 1, 2, 4, 8, 6, 12, 24. Moreover by (a), one has $N(\alpha) = \alpha \phi(\alpha) = -\alpha^2 = -2$.

Now we can start computing the powers of our elements.

•
$$(1 - \alpha)$$

 $(1-\alpha)^2 = 1 + 2 - 2\alpha = 3 + 3\alpha, \quad (1-\alpha)^3 = (1-\alpha)(3+3\alpha) = 3 + 3\alpha - 3\alpha - 3\alpha^2 = 3 - 6 = 2,$ At this point it is clear that the order of $(1-\alpha)$ is not 4, because $(1-\alpha)^2 = 2 - 2\alpha$, and it is not 8, because $(1-\alpha)^8 = (2-2\alpha)^2 \neq 1.$

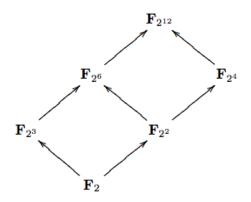
$$(1-\alpha)^3 \cdot (1-\alpha)^3 = (1-\alpha)^6 = 4 = -1, \qquad (1-\alpha)^6 (1-\alpha)^6 = (1-\alpha)^{12} = 1.$$

Conclusion: $(1 - \alpha)$ has order 12.

The orders of $(2 - \alpha)$ and $(3 - \alpha)$ can be computed in a similar way.

3. How many proper subfields does $\mathbf{F}_{2^{12}}$ have? Explain...

Sol.: The proper subfields $\mathbf{F}_{2^{12}}$ are in one-to-one correspondence with the proper divisors of 12, which are 1, 2, 3, 4, 6. The diagram of the inclusions is the following



4. Is the polynomial $x^2 + x + 1$ irreducible or not in $\mathbf{F}_2[x]$? and in $\mathbf{F}_4[x]$?

Sol.: The polynomial $f(x) = x^2 + x + 1$ irreducible in $\mathbf{F}_2[x]$, because $f(0) = f(1) = 1 \neq 0$. Since \mathbf{F}_4 is the splitting field of every irreducible polynomial of degree 2 in $\mathbf{F}_2[x]$, the polynomial f factors in $\mathbf{F}_4[x]$.

5. Given the polynomial $x^3 + 2$ in $\mathbf{F}_5[x]$, compute the order of its roots in the multiplicative group of its splitting field.

Sol.: One can easily see that $x^3 + 2 = (x-2)(x^2 - 2x - 1)$ in $\mathbf{F}_5[x]$ and that $x^2 - 2x - 1$ is irreducible. Hence the splitting field of $x^3 + 2$ is a quadratic extension of \mathbf{F}_5 , namely $\mathbf{F}_{25} \cong \mathbf{F}_5[x]/(x^2 - 2x - 1)$. The order of $\alpha = 2$ in \mathbf{F}_{25}^* is just the order of 2 in \mathbf{F}_5^* and it is equal to 4.

If α is any of the roots of $x^2 - 2x - 1$, we compute its powers using the relation $x^2 = 2x + 1$ and keeping in mind that the order of an element in \mathbf{F}_{25}^* can be 1,2,3,4,6,8,12,24.

$$\alpha^{2} = 2\alpha + 1, \quad \alpha^{3} = \alpha(2\alpha + 1) = 2\alpha^{2} + \alpha = 2, \quad \alpha^{4} = 2\alpha, \quad \alpha^{5} = 4\alpha + 2, \quad \alpha^{6} = \alpha(4\alpha + 2) = 4 = -1.$$

At this point it is clear that α has order 12

$$\alpha^{12} = (\alpha^6)^2 = 1.$$

6. Give an explicit isomorphism $\mathbf{F}_5[x]/(x^2+x+1) \rightarrow \mathbf{F}_5[\sqrt{2}]$.

Sol.: Both fields are quadratic extensions of \mathbf{F}_5 , so they are isomorphic. A field homomorphism is necessarily injective, and in our case also surjective. It is completely determined by $\phi(1) = 1$ and $\phi(x)$. But to have a homomorphism, we must make sure that the ideal $(x^2 + x + 1)$ lies in the kernel of ϕ . In other words $\phi(x) = a + b\sqrt{2}$ must be an element of $\mathbf{F}_5[\sqrt{2}]$ which satisfies the equation $(a + b\sqrt{2})^2 + (a + b\sqrt{2}) + 1 = 0$. This leads to the system modulo 5

$$\begin{cases} a^2 + 2b^2 + a + 1 = 0\\ b(2a+1) = 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} a = 2\\ b = 2, 3 \end{cases}$$

So we have two choices for ϕ

$$\phi(x) = 2 + 2\sqrt{2}$$
 and $\phi(x) = 2 + 3\sqrt{2}$.

- 7. (a) What is the degree of the smallest field extension of \mathbf{F}_5 which contains an element of multiplicative order 13.
 - (b) Determine the degrees of the irreducible factors of $x^{13} 1$ in $\mathbf{F}_5[x]$.

Sol.: (a) The degree of the smallest field extension of \mathbf{F}_5 which contains an element of multiplicative order 13 is the smallest positive integer k for which $\#\mathbf{F}_{5^k}^* = 5^k - 1$ is divisible by 13. This is a necessary condition, and it is also sufficient because $\mathbf{F}_{5^k}^*$ is a cyclic group and contains elements of order d, for every d dividing its order. The smallest such k is 4.

(b) Write

$$x^{13} - 1 = (x - 1)\frac{x^{13} - 1}{x - 1}.$$

The degree 12 polynomial $\frac{x^{13}-1}{x-1}$ is irreducible in $\mathbf{F}_5[x]$ if and only if 5 is a primitive root in \mathbf{Z}_{13}^* , if and only if it has order 12. We have

5,
$$5^2 \equiv -1$$
, $5^3 \equiv -5$, $5^4 \equiv 1 \mod 13$.

Then 5 has order 4 in \mathbf{Z}_{13}^* and $\frac{x^{13}-1}{x-1}$ is not irreducible in $\mathbf{F}_5[x]$. We claim that it splits into the product of 3 irreducible factors of degree 4, equal to the order of 5 in \mathbf{Z}_{13}^* . Let *m* be the degree of an irreducible factor *g* and let ζ be a zero of *g*. Then *m* is the smallest integer d for which $\zeta \in \mathbf{F}_{5^d}$, and $\zeta^{5^d-1} = 1$ (by Fermat thm.). On the other hand $\zeta^{13} = 1$ and ζ has order 13. Consequently

$$13 \mid 5^m - 1 \quad \Leftrightarrow \quad 5^m \equiv 1 \mod 13,$$

and m is the smallest integer with this property. This means that m is the order of 5 in \mathbf{Z}_{13}^* and is the same for all irreducible factors of $\frac{x^{13}-1}{x-1}$ in $\mathbf{F}_5[x]$. In this case there are 3 of them.

8. Compute the discriminant of the polynomial $x^7 + x + 1 \in \mathbf{Z}[x]$.

Sol.: To illustrate the algorithm we compute the discriminat of the polynomial $f(x) = x^n + x + 1$, following the note on resultants:

$$\begin{aligned} \operatorname{disc}(f) &= (-1)^{\frac{n(n-1)}{2}} \operatorname{Res}(f, f') = (-1)^{\frac{n(n-1)}{2}} \operatorname{Res}(f', f) = \\ &= (-1)^{\frac{n(n-1)}{2}} (-1)^{n(n-1)} \operatorname{Res}(nx^{n-1} + 1, x^n + x + 1) = (-1)^{\frac{n(n-1)}{2}} \operatorname{Res}(nx^{n-1} + 1, x^n + x + 1). \end{aligned}$$

Write $f = qf' + r$, with $r(x) = \frac{n-1}{n}x - 1$. Then
 $\operatorname{disc}(f) = (-1)^{\frac{n(n-1)}{2}} n^{n-1} \operatorname{Res}(nx^{n-1} + 1, \frac{n-1}{n}x - 1) = \\ &= (-1)^{\frac{n(n-1)}{2}} n^{n-1} (-1)^{n-1} \operatorname{Res}(\frac{n-1}{n}x - 1, nx^{n-1} + 1) = \\ &= (-1)^{\frac{3n(n-1)}{2}} n^{n-1} (\frac{n-1}{n})^{n-1} \left(n(\frac{n}{n-1})^{n-1} + 1 \right) = \\ &= (-1)^{\frac{n(n-1)}{2}} (n-1)^{n-1} \left(n(\frac{n}{n-1})^{n-1} + 1 \right) = \\ &= (-1)^{\frac{n(n-1)}{2}} (n^n + (n-1)^{n-1}). \end{aligned}$
For $n = 7$ we get

$$-(7^7 + 6^6) = -870199.$$

9. Let $f = x^2 + x + 1$ in $\mathbf{F}_2[x]$. Show that its Galois group G_f is not contained in $A_2 = \{Id\}$, despite the fact that its discriminant is a square in \mathbf{F}_2 .

Sol.: The polynomial f is irreducible over Q; consequently it has distinct zeros α and β . The Galois group G_f is non-trivial (hence $\neq A_2$), since it contains the non-trivial element which switches α and β . Every element in \mathbf{F}_2 is a square, so disc(f) being a square puts no restriction.

10. Exhibit a transitive subgroup of S_4 different from A_4 and S_4 .

Sol.: One example is the group of cyclic permutations of $\{1, 2, 3, 4\}$, generated by (1234); another one is the group generated by the elements (1234) and (14)(23), isomorphic to D_4 .