NAP 2017. Module 4. Homework 1 (on the material of week 1)  Wednesday, July 5, 2017.

These excercises are due July 12, 2017, at 10 pm. Nepal time. Please, send them to
nap@rnta.eu and to laurageatti@gmail.com and schoof.rene@gmail.com. Contact us if
you have any question!

1. Let p be a prime. Prove that there are infinitely many irreducible polynomials in Fp[z].

Sol.: For every n € N, there is a finite field with p™ elements which can be obtained as the splitting
field of an irreducible polynomial in F, of degree n. Hence there are infinitely many irreducible
polynomials in F,[x].

2. (a) Prove that the Frobenius automorphism of F5[\/2] sends v/2 to —/2.
(b) Compute the order of 1 —+/2, 2 —+/2, 3 —+/2 in F5[V2]*.
Sol.: (a) Set a := /2. Then « is a zero of the irreducible quadratic polynomial 2> — 2 € Fj[z].
Therefore it satisfies a? = 2. Let ¢(z) = 2° be the Frobenius automorphism. Then
dla) =’ = a?a’a = 4a = —a.

(b) Recall that F5[v/2]* is a cyclic group of order 24 = 223, and the order of an element in F5[v/2]*
has to be a divisor of 24, i.e 1,2,4,8,6,12,24.
Moreover by (a), one has N(a) = ag(a) = —a? = —2.

Now we can start computing the powers of our elements.
o (l—a)
1-a)!=142-20=3+3a, (1-a)P=(1-a)B3+3a)=3+3a—-3a—-3a*>=3-6=2,
At this point it is clear that the order of (1 — a) is not 4, because (1 — a)? = 2 — 2a, and it is not
8, because (1 —a)® = (2 — 2a)? # 1.
1-a)P - 1-aP=(1-a)=4

Conclusion: (1 — «) has order 12.

~1, 1-a)f(1l-a)f=010-a)?=1.

The orders of (2 — «) and (3 — «) can be computed in a similar way.
3. How many proper subfields does Fy12 have? Explain...

Sol.: The proper subfields Fyi2 are in one-to-one corresponedence with the proper divisors of 12,
which are 1, 2, 3, 4, 6. The diagram of the inclusions is the following
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4. Is the polynomial % + x + 1 irreducible or not in Fa[z]? and in Fylx]?

Sol.: The polynomial f(z) = 2?+z+ 1 irreducible in Fy[z], because f(0) = f(1) = 1 # 0. Since Fy4
is the splitting field of every irreducible polynomial of degree 2 in Fs[z|, the polynomial f factors
in Fylx].

5. Given the polynomial 23 + 2 in Fs[z], compute the order of its roots in the multipicative group
of its splitting field.

Sol.: One can easily see that 23 +2 = (x—2)(z? —2z—1) in F5[z] and that 2% — 2z —1 is irreducible.
Hence the splitting field of 2% + 2 is a quadratic extension of F5, namely Fa5 = F5[z]/(2? — 22 — 1).
The order of a = 2 in F3; is just the order of 2 in F} and it is equal to 4.

If o is any of the roots of #2 — 2z — 1, we compute its powers using the relation z? = 2z + 1 and
keeping in mind that the order of an element in Fi; can be 1,2,3,4,6,8,12,24.

o® =2a+1, o®=al2a+1)=2a*+a=2, o*=2a, o’ =4a+2, of=a(da+2)=4=-1.
At this point it is clear that o has order 12

a'? = (af)? = 1.

6. Give an explicit isomorphism Fs[z]/(z? + 2 + 1) — F5[V2].

Sol.: Both fields are quadratic extensions of F5, so they are isomorphic. A field homomorphism is
necessarily injective, and in our case also surjective. It is completely determined by ¢(1) = 1 and
¢(x). But to have a homomorphism, we must make sure that the ideal (22 +z +1) lies in the kernel
of ¢. In other words ¢(z) = a + by/2 must be an element of F5[/2] which satisfies the equation
(a4 bv2)? + (a + by/2) + 1 = 0. This leads to the system modulo 5

a2+208+a+1=0 o a=2
b(2a+1) =0 b=23.

So we have two choices for ¢

plx) =242v2  and  ¢(x) =2+ 3V2.

7. (a) What is the degree of the smallest field extension of F5 which contains an element of
multiplicative order 13.
(b) Determine the degrees of the irreducible factors of x'3 — 1 in Fslx].

Sol.: (a) The degree of the smallest field extension of F5 which contains an element of multiplicative
order 13 is the smallest positive integer k for which #F;, = 5% — 1 is divisible by 13. This is a
necessary condition, and it is also sufficient because F7, is a cyclic group and contains elements of
order d, for every d dividing its order. The smallest such k is 4.

(b) Write

13 —1

e —1=(x—1)

x—1"



The degree 12 polynomial w;j_*ll is irreducible in F5[z] if and only if 5 is a primitive root in Z7, if

and only if it has order 12. We have
5 5°=-1, 5°=-5 5'=1 mod 13.

Then 5 has order 4 in Zj5 and ”C:':ll is not irreducible in F5[z].

We claim that it splits into the product of 3 irreducible factors of degree 4, equal to the order
of 5 in Zj;. Let m be the degree of an irreducible factor g and let ¢ be a zero of g. Then m is the
smallest integer d for which ¢ € Fsa, and ¢~ =1 (by Fermat thm.). On the other hand ¢!* = 1

and ¢ has order 13. Consequently
13]5™ -1 <« 5™ =1mod 13,

and m is the smallest integer with this property. This means that m is the order of 5 in Zj; and
z™ -1
z—1

is the same for all irreducible factors of in F5[z]. In this case there are 3 of them.

8. Compute the discriminant of the polynomial 7 + z + 1 € Z[z].

Sol.: To illustrate the algorithm we compute the discriminat of the polynomial f(z) =™ +x + 1,
following the note on resultants:

n(n—1) n(n—1)

disc(f) = (=1)" = Res(f,f')=(-1)"= Res(f',f) =
= (-1)"%"

Write f = gf’ +r, with r(z) = 1z — 1. Then

n(n—1)

(=) D Res(nz" ' +1,2" +x+1) = (=1)" 2z Res(nz" '+ 1,2" +z +1).

n(n—1)

disc(f) = (=1)" =z n" 'Res(na" ' + 1,21z — 1) =

= (=)= n" I (=1)"TRes(“ Ly —1,na"t +1) =

n

3n(n—1)
2

= () () (n) T ) =
= ()T (=) () 1) =

n(n—1)
2

(n"+ (n—1)"71).

For n =7 we get
—(77 4 6%) = —870199.

9. Let f = 2® +x+ 1 in Fa[z]. Show that its Galois group Gy is not contained in Ay = {Id},
despite the fact that its discriminant is a square in Fs.

Sol.: The polynomial f is irreducible over Q; consequently it has distinct zeros « and 5. The Galois
group Gy is non-trivial (hence # Aj), since it contains the non-trivial element which switches o
and (. Every element in Fs is a square, so disc(f) being a square puts no restriction.

10. Ezhibit a transitive subgroup of Sy different from Ay and Sy.

Sol.: One example is the group of cyclic permutations of {1,2, 3,4}, generated by (1234); another
one is the group generated by the elements (1234) and (14)(23), isomorphic to Djy.



