
NAP 2017. Module 4. Homework 1 (on the material of week 1) Wednesday, July 5, 2017.

These excercises are due July 12, 2017, at 10 pm. Nepal time. Please, send them to
nap@rnta.eu and to laurageatti@gmail.com and schoof.rene@gmail.com. Contact us if
you have any question!

1. Let p be a prime. Prove that there are infinitely many irreducible polynomials in Fp[x].

Sol.: For every n ∈ N, there is a finite field with pn elements which can be obtained as the splitting
field of an irreducible polynomial in Fp of degree n. Hence there are infinitely many irreducible
polynomials in Fp[x].

2. (a) Prove that the Frobenius automorphism of F5[
√

2] sends
√

2 to −
√

2.
(b) Compute the order of 1−

√
2, 2−

√
2, 3−

√
2 in F5[

√
2]∗.

Sol.: (a) Set α :=
√

2. Then α is a zero of the irreducible quadratic polynomial x2 − 2 ∈ F5[x].
Therefore it satisfies α2 = 2. Let φ(x) = x5 be the Frobenius automorphism. Then

φ(α) = α5 = α2α2α = 4α = −α.
(b) Recall that F5[

√
2]∗ is a cyclic group of order 24 = 23 ·3, and the order of an element in F5[

√
2]∗

has to be a divisor of 24, i.e 1, 2, 4, 8, 6, 12, 24.
Moreover by (a), one has N(α) = αφ(α) = −α2 = −2.

Now we can start computing the powers of our elements.

• (1− α)
(1− α)2 = 1 + 2− 2α = 3 + 3α, (1− α)3 = (1− α)(3 + 3α) = 3 + 3α− 3α− 3α2 = 3− 6 = 2,

At this point it is clear that the order of (1− α) is not 4, because (1− α)2 = 2− 2α, and it is not
8, because (1− α)8 = (2− 2α)2 6= 1.

(1− α)3 · (1− α)3 = (1− α)6 = 4 = −1, (1− α)6(1− α)6 = (1− α)12 = 1.

Conclusion: (1− α) has order 12.

The orders of (2− α) and (3− α) can be computed in a similar way.

3. How many proper subfields does F212 have? Explain...

Sol.: The proper subfields F212 are in one-to-one corresponedence with the proper divisors of 12,
which are 1, 2, 3, 4, 6. The diagram of the inclusions is the following



4. Is the polynomial x2 + x+ 1 irreducible or not in F2[x]? and in F4[x]?

Sol.: The polynomial f(x) = x2 +x+1 irreducible in F2[x], because f(0) = f(1) = 1 6= 0. Since F4

is the splitting field of every irreducible polynomial of degree 2 in F2[x], the polynomial f factors
in F4[x].

5. Given the polynomial x3 + 2 in F5[x], compute the order of its roots in the multipicative group
of its splitting field.

Sol.: One can easily see that x3+2 = (x−2)(x2−2x−1) in F5[x] and that x2−2x−1 is irreducible.
Hence the splitting field of x3 +2 is a quadratic extension of F5, namely F25

∼= F5[x]/(x2−2x−1).
The order of α = 2 in F∗25 is just the order of 2 in F∗5 and it is equal to 4.
If α is any of the roots of x2 − 2x − 1, we compute its powers using the relation x2 = 2x + 1 and
keeping in mind that the order of an element in F∗25 can be 1,2,3,4,6,8,12,24.

α2 = 2α+1, α3 = α(2α+1) = 2α2+α = 2, α4 = 2α, α5 = 4α+2, α6 = α(4α+2) = 4 = −1.

At this point it is clear that α has order 12

α12 = (α6)2 = 1.

6. Give an explicit isomorphism F5[x]/(x2 + x+ 1)→ F5[
√

2].

Sol.: Both fields are quadratic extensions of F5, so they are isomorphic. A field homomorphism is
necessarily injective, and in our case also surjective. It is completely determined by φ(1) = 1 and
φ(x). But to have a homomorphism, we must make sure that the ideal (x2 +x+1) lies in the kernel
of φ. In other words φ(x) = a + b

√
2 must be an element of F5[

√
2] which satisfies the equation

(a+ b
√

2)2 + (a+ b
√

2) + 1 = 0. This leads to the system modulo 5{
a2 + 2b2 + a+ 1 = 0
b(2a+ 1) = 0

⇔
{
a = 2
b = 2, 3.

So we have two choices for φ

φ(x) = 2 + 2
√

2 and φ(x) = 2 + 3
√

2.

7. (a) What is the degree of the smallest field extension of F5 which contains an element of
multiplicative order 13.

(b) Determine the degrees of the irreducible factors of x13 − 1 in F5[x].

Sol.: (a) The degree of the smallest field extension of F5 which contains an element of multiplicative
order 13 is the smallest positive integer k for which #F∗5k = 5k − 1 is divisible by 13. This is a
necessary condition, and it is also sufficient because F∗5k is a cyclic group and contains elements of
order d, for every d dividing its order. The smallest such k is 4.

(b) Write

x13 − 1 = (x− 1)
x13 − 1

x− 1
.



The degree 12 polynomial x13−1
x−1 is irreducible in F5[x] if and only if 5 is a primitive root in Z∗13, if

and only if it has order 12. We have

5, 52 ≡ −1, 53 ≡ −5, 54 ≡ 1 mod 13.

Then 5 has order 4 in Z∗13 and x13−1
x−1 is not irreducible in F5[x].

We claim that it splits into the product of 3 irreducible factors of degree 4, equal to the order
of 5 in Z∗13. Let m be the degree of an irreducible factor g and let ζ be a zero of g. Then m is the

smallest integer d for which ζ ∈ F5d , and ζ5
d−1 = 1 (by Fermat thm.). On the other hand ζ13 = 1

and ζ has order 13. Consequently

13 | 5m − 1 ⇔ 5m ≡ 1 mod 13,

and m is the smallest integer with this property. This means that m is the order of 5 in Z∗13 and

is the same for all irreducible factors of x13−1
x−1 in F5[x]. In this case there are 3 of them.

8. Compute the discriminant of the polynomial x7 + x+ 1 ∈ Z[x].

Sol.: To illustrate the algorithm we compute the discriminat of the polynomial f(x) = xn + x+ 1,
following the note on resultants:

disc(f) = (−1)
n(n−1)

2 Res(f, f ′) = (−1)
n(n−1)

2 Res(f ′, f) =

= (−1)
n(n−1)

2 (−1)n(n−1)Res(nxn−1 + 1, xn + x+ 1) = (−1)
n(n−1)

2 Res(nxn−1 + 1, xn + x+ 1).

Write f = qf ′ + r, with r(x) = n−1
n x− 1. Then

disc(f) = (−1)
n(n−1)

2 nn−1Res(nxn−1 + 1, n−1n x− 1) =

= (−1)
n(n−1)

2 nn−1(−1)n−1Res(n−1
n x− 1, nxn−1 + 1) =

= (−1)
3n(n−1)

2 nn−1(n−1
n )n−1

(
n( n

n−1 )n−1 + 1
)

=

= (−1)
n(n−1)

2 (n− 1)n−1
(
n( n

n−1 )n−1 + 1
)

=

= (−1)
n(n−1)

2

(
nn + (n− 1)n−1

)
.

For n = 7 we get
−(77 + 66) = −870199.

9. Let f = x2 + x + 1 in F2[x]. Show that its Galois group Gf is not contained in A2 = {Id},
despite the fact that its discriminant is a square in F2.

Sol.: The polynomial f is irreducible over Q; consequently it has distinct zeros α and β. The Galois
group Gf is non-trivial (hence 6= A2), since it contains the non-trivial element which switches α
and β. Every element in F2 is a square, so disc(f) being a square puts no restriction.

10. Exhibit a transitive subgroup of S4 different from A4 and S4.

Sol.: One example is the group of cyclic permutations of {1, 2, 3, 4}, generated by (1234); another
one is the group generated by the elements (1234) and (14)(23), isomorphic to D4.


