These excercises are due July 12, 2017, at 10 pm. Nepal time. Please, send them to nap@rnta.eu and to laurageatti@gmail.com and schoof.rene@gmail.com. Contact us if you have any question!

- 1. Let p be a prime. Prove that there are infinitely many irreducible polynomials in $\mathbf{F}_p[x]$.
- 2. (a) Prove that the Frobenius automorphism of $\mathbf{F}_5[\sqrt{2}]$ sends $\sqrt{2}$ to $-\sqrt{2}$.
 - (b) Compute the order of $1 \sqrt{2}$, $2 \sqrt{2}$, $3 \sqrt{2}$ in $\mathbf{F}_5[\sqrt{2}]^*$.
- 3. How many proper subfields does $\mathbf{F}_{2^{12}}$ have? Explain...
- 4. Is the polynomial $x^2 + x + 1$ irreducible or not in $\mathbf{F}_2[x]$? and in $\mathbf{F}_4[x]$?
- 5. Given the polynomial $x^3 + 2$ in $\mathbf{F}_5[x]$, compute the order of its roots in the multiplicative group of its splitting field.
- 6. Give an explicit isomorphism $\mathbf{F}_5[x]/(x^2+x+1) \to \mathbf{F}_5[\sqrt{2}]$.
- 7. (a) What is the degree of the smallest field extension of \mathbf{F}_5 which contains an element of multiplicative order 13.
 - (b) Determine the degrees of the irreducible factors of $x^{13} 1$ in $\mathbf{F}_5[x]$.
- 8. Compute the discriminant of the polynomial $x^7 + x + 1 \in \mathbf{Z}[x]$. Note: Question number 8 is optional.
- 9. Let $f = x^2 + x + 1$ in $\mathbf{F}_2[x]$. Show that its Galois group G_f is not contained in $A_2 = \{Id\}$, despite the fact that its discriminant is a square in \mathbf{F}_2 .
- 10. Exhibit a transitive subgroup of S_4 different from A_4 and S_4 .