
NAProject 2017. Module 4: Excercises 1: solutions.

1. Show that in a field of characteristic 3 we have (x+ y)4 + x4 + (x− y)4 + y4 = 0.

Sol.: From (x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 and (x+ y)4 = x4− 4x3y+ 6x2y2− 4xy3 + y4,
which in charcteristic 3 become x4 +x3y+xy3 + y4 and x4−x3y−xy3 + y4 respectively, we obtain

(x+ y)4 + x4 + (x− y)4 + y4 = 3x4 + 3y4 = 0.

2. Show that any quadratic polynomial in Zp[x] can be written as the product of two linear poly-
nomials with coefficients in Fp2 .

Sol.: Let f(x) = ax2 + bx + c be a degree 2 polynomial in Fp[x]. If f is reducible in Fp[x], i.e.
the product of two degree 1 polynomials with coefficients in Fp, there is nothing to show since
Fp ↪→ Fp2 .
Assume now that f is irreducible and let ζ be one of its roots. Then Fp(ζ) is an extension of Fp
of degree 2, and therefore isomorphic to Fp2 . It remains to show that the second root of f lies in
Fp(ζ) as well: this is immediate from the fact the roots of an arbitrary irreducible polynomial in
Fp[x] are obtained from a given root by iterating the Frobenius automorphism. In this case, the
second root is ζp ∈ Fp(ζ).

3. Prove that f = x3 + x2 + 1 is irreducible in Z2[x]. Let K = Z2[x]/(f). Show hat K is a field
of 8 elements. Show that x generates K∗.

Sol.: The polynomial f(x) = x3 + x2 + 1 is irreducible in Z2[x] because it has no zeros in Z2 (if it
were reducible, it would necessarily have a linear factor). The field F8 is isomorphic to Z2[x]/(f),
and can be identified with the degree 2 polynomials with coefficients in Z2

0, 1, x, x2, 1 + x, 1 + x2, x+ x2, 1 + x+ x2,

with sum and product modulo f , i.e. using the relation x3 = x2 + 1. For example

(1 + x2) + (x+ x2) = 1 + x+ 2x2 = 1 + x;

(1 + x)(x+ x2) = x+ 2x2 + x3 = x− (x2 + 1) = x2 + x+ 1;

(x2)2 = x4 = x(x3) = x(x2 + 1) = x3 + x = x2 + x+ 1

x(x2 + x+ 1) = x3 + x2 + x = 1 + x.

Its multiplicative group F∗
8 is cyclic of order 7. Every element, which is not the identity, is a

generator of F∗
8. The elements {0, 1} form the subfield F2 ↪→ F8, which is also the only subfield.

Let’s check that x generates K∗:

x, x2, , x3 = x2+1, x4 = x3+x = x2+x+1, x5 = x3+x2+x = x+1, x6 = x2+x, x7 = x3+x2 = 1.

4. Determine #{a ∈ F16 : F16 = F2(a)} and #{a ∈ F64 : F64 = F2(a)}.



Sol.: The first set consists of the elements of F16 minus those in the subfield F22 : hence it has
cardinality 16− 4 = 12.

Alternatively: the first set consists of the zeros of degree 4 irreducible polynomials with coefficients
in F2. There are 3 of them. Hence the cardinality of the first set is equal to 3× 4 = 12.

Similarly, the second set consists of the elements of F64 minus those in the subfields F22 and F23 ,
keeping into account that F22 ∩ F23 = F2: hence it has cardinality 64− 4− 8 + 2 = 54.

Alternatively: the second set consists of the zeros of degree 6 irreducible polynomials with coeffi-
cients in F2. There are 9 of them. Hence the cardinality of the second set is equal to 9× 6 = 54.

Note that the above sets properly contain the generators of the respective multiplicative groups:
given one such a, the field F2(a) contains all the powers of a, which fill the non-zero elements in
the field.

5. Let Fq be a finite field. Count the number of irreducible polynomials of degree d in Fq[X] for
d = 1, . . . , 4.

Sol.: The number of irreducible polynomials of degree d in Fq[X] is q − 1 times the number of the
monic irreducible polynomials of degree d in Fq[X].
So we count the monic ones: an irreducible polynomial of degree d in Fq[X] determines a degree d
extension Fqd of Fq. Any zero of one such polynomial lies in Fqd but in no proper subfield of Fqd .
The number of such zeros, divided by the degree, is the number of irreducible monic polynomials
of degree d in Fq[X]:

d = 1: #{x− b, b ∈ Fq} = q

d = 2: 1
2#(Fq2 \ Fq) = 1

2 (q2 − q).
d = 3: 1

3#(Fq3 \ Fq) = 1
3 (q3 − q).

d = 4: 1
4#(Fq4 \ Fq2) = 1

4 (q4 − q2).

6. Let p and r be distinct primes. Show that p is a primitive root modulo r ⇔ the polynomial
(Xr − 1)/(X − 1) is irreducible in Fp[X].

See Solutions of Lecture 2.

7. (a) Factor X7 − 1 and X11 − 1 in F2[X].
(b) Factor X16 − 1 and X16 −X in F2[X].

See Solutions of Lecture 2.

Let N and Tr denote the norm and trace maps from Fpm to Fp.

By definition Tr(x) =
∑m−1
i=0 φi(x) and N(x) =

∏m−1
i=0 φi(x), where φ : Fpm −→ Fpm denotes the

Frobenius automorphism.

8. (a) Show that for every a ∈ Fpm we have N(a) = a1+p+...+p
m−1

and Tr(a) = a+ap+...+ap
m−1

.
(b) Show that the trace is a surjective homomorphism of additive groups. (Hint: estimate the

size of the kernel)
(c) Show that the Norm map is a surjective homomorphism F∗

pm to F∗
p. (Hint: estimate the

size of the kernel)

See Solutions of Lecture 2.

9. (a)For which of the following primes p the ring Fp[x]/(x2+1) is a field? p = 3, 5, 7, 11, 13, 19, 23.



(b) Show that x2 + 1 is irreducible in Zp[x] if and only if p ≡ 3 mod 4.

Sol.: (a) We can construct a field of p2 elements by using the polynomial f(x) = x2 + 1 if and only
if f is irreducible in Fp[x]. Since it is quadratic, this is true if and only f has no linear factors, if
and only if f(0), . . . , f(p− 1) 6≡ 0 mod p.

One can check the values of f(x) = x2 + 1 on Zp:

p = 3: f(0) ≡ 1, f(1) ≡ 2, f(2) ≡ 2; f irreducible;

p = 5: f(0) ≡ 1, f(1) ≡ 2, f(2) ≡ 0. f reducible;

p = 7: f(0) ≡ 1, f(1) ≡ f(6) ≡ 2, f(2) ≡ f(5) ≡ 5, f(3) ≡ f(4) ≡ 3; f irreducible;

etc...

(b) Proving that f is irreducible in Zp[x] if and only if p ≡ 3 mod 4, is equivalent to proving that
f is reducible in Fp[x] if and only if p ≡ 1 mod 4.
Indeed f is reducible in Fp[x] if and only if it has a zero in Zp if and only if x2 ≡ −1 mod p, which
means that −1 is a square modulo p. An element z in the cyclic group Z∗

p is a square if and only

if z(p−1)/2 ≡ 1 mod p. So we have to solve the equation

(−1)(p−1)/2 ≡ 1 mod p, (∗)

in p. Recall that −1 has order 2 in Z∗
p, for p 6= 2. Hence (*) holds if and only if (p− 1)/2 is even,

if and only if p ≡ 1 mod 4.

Checking the above list of primes, we find that for p=3, 7, 11, 19, 23 the polynomial x2 + 1 is
irreducible in Fp[x], while it is not for p=5,13.

10. (a) Show that the squares form subgroup of F∗
q and that its index is 2 if q is odd and 1 if q is

even.
(b) Show that if q = 2k, then every element of Fq has a square root in Fq.
(c) For any d > 0, show that the set of d-th powers form subgroup of F∗

q and that its index is
gcd(d, q − 1).

Sol.: (a) It is easy to check that the squares form a subgroup of F∗
q .

If p is prime, then q = pk is odd if and only if p is an odd prime (and even if and only if q = 2k).
So assume that q = pk, with p an odd prime, and let a be a primitive root in F∗

q (we know that

F∗
q is cyclic!). Then z ∈ F∗

q is a square if and only if z(q−1)/2 = 1 if and only if z = a2m, for some
m ∈ Z: one implication follows directly from Lagrange Theorem. For the converse, write z = as,
for some integer s. If z(q−1)/2 = (as)(q−1)/2 = as(q−1)/2 = 1, then the fact that a is a primitive root
forces s/2 to be an integer, and s to be even.
Now it is clear that half of the elements in F∗

q are squares and the squares form a subgroup of index
2 in F∗

q .

(b) Recall that in characteristic 2, φ(z) = z2 is an automorphism of F2k , namely the Frobenius
automorphism. As φ is surjective, every element of F2k is a square and therefore admits a square
root. In particular the index of the squares in F∗

2k is 1.

11. (a) Show that x2+2x+2 is an irreducible polynomial in F3[x] and that its roots are generators
of the multiplicative group of its splitting field.

(b) Show that x4 + x3 + x2 + x + 1 is irreducible in F2[x] but its roots do not generate the
multiplicative group of its splitting field.



(c) Show that the roots of a degree n irreducible polynomial with symmetric coefficients (ai =
an−i, for 1 ≤ i ≤ n/2) do not generate the multiplicative group of its splitting field.

Sol.: (a) The polynomial f(x) = x2 + 2x + 2 is irreducible since it has no zero in F3. Hence it
determines a degree 2 extension of F3 isomorphic to F3[x]/(x2 + 2x+ 2). If α is a root of f , then
one can also write F3[x]/(x2 + 2x + 2) ∼= F3[α]. Then α generates the multiplicative group of
F3[α]∗ if and only x generates F3[x]/(x2 +2x+2). Computing the powers of x modulo the relation
x2 = −2x− 2 = x+ 1, we find

x, x2 = x+ 1, x3 = x(x+ 1) = 2x+ 1, x4 = x(2x+ 1) = 2, x5 = 2x,

x6 = 2x2 = 2x+ 2, x7 = x(2x+ 2) = x+ 2, x8 = x(x+ 2) = 1.

(b) The polynomial f(x) = x4 + x3 + x2 + x+ 1 is irreducible in F2[x]: it has no linear factor nor
degree 2 factors. The splitting field of f is F2[x]/(f) = {ax3 + bx2 + cx+ d | a, b, c, d ∈ F2} ∼= F16.
Computing the powers of x we find

x, x2, x3, x4 = x3 + x2 + x+ 1, x5 = x(x3 + x2 + x+ 1) = x4 + x3 + x2 + x = 1.

Hence its roots do not generate the multiplicative group of F∗
16.

(c) Let f(x) = xn + an−1x
n−1 + . . .+ an−1x+ 1 be a degree n symmetric polynomial in Fp[x], for

some prime p. One easily verifies that if α is a root of f , then 1
α is a root as well:

αn + an−1α
n−1 + . . .+ an−1α+ 1 = 0 ⇔ 1

αn
(1 + an−1α+ . . .+ αn) = 0.

Recall that the roots of f are of the form α, αp, . . . , αp
n−1

. Hence α−1 = αp
i

, for 0 ≤ i ≤ n − 1.
Equivalently, αp

i+1 = 1 and the order of α in F ∗
pn is less or equal than pi + 1, which is strictly

smaller than pn − 1.

12. Let p be a prime and let a ∈ Fp be a non-zero element. Show that xp − x+ a is irreducible in
Fp[x]. (Hint: if ζ is a root, then so is ζ + 1).

Sol.: Assume that ζp − ζ + a = 0. Since a 6= 0, also ζ 6= 0. In Fp[x], one has

(ζ + 1)p − (ζ + 1) + a = ζp + 1− ζ − 1 + a = 0.

This says that the roots of ζp − ζ + a = 0 are given by

ζ, ζ + 1, . . . , ζ + p− 1.

Hence they are all distinct and lie in the same extension of Fp, say a field isomorphic to Fpk , with
k a divisor of p = deg(xp − x + a). But k > 1. Therefore k = p and xp − x + a is necessarily
irreducible.

13. Show that if F is a field whose multiplicative group is cyclic, then F must be finite.

Sol.: Fix a 6= ±1 a generator of F∗. Then am = −a, for some m ∈ Z, which implies a2m−2 = 1.
If m > 1, then F ∗ is finite and also F is finite.
If m = 1, then a = −a⇔ 2a = 0⇔ char(F) = 2. Write a+ 1 = an, for some n 6= 0, 1. Then a is a
zero of the polynomial f(a) = xn + x+ 1 ∈ Z2[x].
Consider the map

ψ:F2[x]/(xn + x+ 1)→ F, f̄(x) 7→ f̄(a).

Since F∗ is cyclic, the map
F2[x]→ F, f(x) 7→ f(a)

is surjective and its kernel contains the ideal (xn+x+1). Then it factors through F2[x]/(xn+x+1).
Consequently also ψ is surjective. Since F2[x]/(xn + x+ 1) is finite, so is F.


