NAProject 2017. Module 4:  Excercises 1: solutions.

1. Show that in a field of characteristic 3 we have (z +y)* + 2* + (z —y)* + y* = 0.

Sol.: From (z +y)* = 2* + 423y + 62%y? + 4oy + y* and (z+y)* = 2* — 423y + 6222 — 4ay® + 4,
which in charcteristic 3 become z* + 23y + zy® + y* and z* — 23y — 2y® + y* respectively, we obtain

(:L’—l—y)4—|—x4—|—(x—y)4+y4:3$4—|—3y420.

2. Show that any quadratic polynomial in Zy[z] can be written as the product of two linear poly-
nomials with coefficients in F 2.

Sol.: Let f(z) = az? 4+ bx + ¢ be a degree 2 polynomial in F,[z]. If f is reducible in F,[z], i.e.
the product of two degree 1 polynomials with coefficients in F,, there is nothing to show since
Fp — sz.

Assume now that f is irreducible and let ¢ be one of its roots. Then F,(() is an extension of F,,
of degree 2, and therefore isomorphic to F,.. It remains to show that the second root of f lies in
F,(¢) as well: this is immediate from the fact the roots of an arbitrary irreducible polynomial in
F,[z] are obtained from a given root by iterating the Frobenius automorphism. In this case, the
second root is (P € F, ().

3. Prove that f = 23 + 22 + 1 is irreducible in Zo[z]. Let K = Zy[x]/(f). Show hat K is a field
of 8 elements. Show that x generates K*.

Sol.: The polynomial f(z) = 2® + 2% + 1 is irreducible in Zs[z] because it has no zeros in Zy (if it
were reducible, it would necessarily have a linear factor). The field Fyg is isomorphic to Zs[x]/(f),
and can be identified with the degree 2 polynomials with coefficients in Zo

0, 1, x, x2, 14z, 1—|—$2, x+m2, 1—1—3:—1—3@2,

3

with sum and product modulo f, i.e. using the relation 23 = 22 + 1. For example

(1+2%) + (z+2¥)=14+2+22% =1+

Q4+z)(z4+2)=a+22%+23 =z — (2 +1) =2+ 2+ 1;
() =zt =z(@}) =z@*+ 1) =2+ =0+ +1
z(2?+r+) =2+ +x=1+uz

Its multiplicative group Fg is cyclic of order 7. Every element, which is not the identity, is a
generator of F§. The elements {0, 1} form the subfield Fy < Fg, which is also the only subfield.

Let’s check that x generates K*:

T, 1'2, ,ZES = xz—i—l, zt =34z = x2+:r—|—1, z® = 3424z = z+1, 28 = x2+x, =342 =1

4. Determine #{a € F15 : F15 =F3(a)} and #{a € Fgy : Fgy = F3(a)}.



Sol.: The first set consists of the elements of F1g minus those in the subfield Fy2: hence it has
cardinality 16 — 4 = 12.

Alternatively: the first set consists of the zeros of degree 4 irreducible polynomials with coefficients
in Fy. There are 3 of them. Hence the cardinality of the first set is equal to 3 x 4 = 12.

Similarly, the second set consists of the elements of Fgs minus those in the subfields Fo2 and Fas,
keeping into account that Fy2 N Fos = Fy: hence it has cardinality 64 —4 — 8 4+ 2 = 54.
Alternatively: the second set consists of the zeros of degree 6 irreducible polynomials with coeffi-
cients in F5. There are 9 of them. Hence the cardinality of the second set is equal to 9 x 6 = 54.

Note that the above sets properly contain the generators of the respective multiplicative groups:
given one such a, the field Fa(a) contains all the powers of a, which fill the non-zero elements in
the field.

5. Let F be a finite field. Count the number of irreducible polynomials of degree d in F,[X] for
d=1,...,4.

Sol.: The number of irreducible polynomials of degree d in F,[X] is ¢ — 1 times the number of the
monic irreducible polynomials of degree d in F,[X].

So we count the monic ones: an irreducible polynomial of degree d in F,[X] determines a degree d
extension F 4« of F,. Any zero of one such polynomial lies in F « but in no proper subfield of F .
The number of such zeros, divided by the degree, is the number of irreducible monic polynomials
of degree d in F,[X]:

d=1:. #{z—-b, beF,} =¢q
d=2: %#(qu\Fq): %(QQ—‘])-
d=3:  3#(Fp \Fq) = 3(¢* —q)
d=4: #(Fu\Fpe)=1(¢"—d%.
6. Let p and r be distinct primes. Show that p is a primitive root modulo r < the polynomial
(X" —1)/(X —1) is irreducible in F,[X].

See Solutions of Lecture 2.

7. (a) Factor X" —1 and X' — 1 in Fo[X].
(b) Factor X6 —1 and X' — X in Fo[X].

See Solutions of Lecture 2.

Let N and T'r denote the norm and trace maps from Fym to F,,.

By definition Tr(z) = 275" ¢'(z) and N(z) =[] ¢'(x), where ¢ : Fym — Fpm denotes the

Frobenius automorphism.

8. (a) Show that for every a € Fym we have N(a) = a"*?T+""" and Tr(a) = a4aP+...4-a?" .
(b) Show that the trace is a surjective homomorphism of additive groups. (Hint: estimate the
size of the kernel)

(c) Show that the Norm map is a surjective homomorphism F. to Fy. (Hint: estimate the
size of the kernel)

See Solutions of Lecture 2.

9. (a)For which of the following primes p the ring Fplx]/(x*>+1) is a field? p=3, 5, 7, 11, 13, 19, 23.



(b) Show that z* + 1 is irreducible in Zy[z] if and only if p = 3 mod 4.

Sol.: (a) We can construct a field of p? elements by using the polynomial f(x) = 2?4+ 1 if and only
if f is irreducible in F,[z]. Since it is quadratic, this is true if and only f has no linear factors, if

and only if f(0),..., f(p—1) # 0 mod p.
One can check the values of f(x) =22 4+ 1 on Zj:

p=3: f(0)=1, f(1) =2, f(2) =2; f irreducible;

p=>5: f(0)=1, f(1) =2, f(2) =0. f reducible;
p="T f(0)=1, f(1) = f(6) =2, f(2) = f(5) =5, f(3) = f(4) = 3; [ irreducible;
etc...

(b) Proving that f is irreducible in Z,[z] if and only if p = 3 mod 4, is equivalent to proving that
f is reducible in F[z] if and only if p = 1 mod 4.

Indeed f is reducible in F[z] if and only if it has a zero in Z, if and only if 22 = —1 mod p, which
means that —1 is a square modulo p. An element z in the cyclic group Zy is a square if and only

if 2P=1/2 =1 mod p. So we have to solve the equation
(=1)P=1/2 = 1 mod p, (%)

in p. Recall that —1 has order 2 in Z, for p # 2. Hence (*) holds if and only if (p — 1)/2 is even,
if and only if p = 1 mod 4.

Checking the above list of primes, we find that for p=3, 7, 11, 19, 23 the polynomial 22 + 1 is
irreducible in F,[x], while it is not for p=>5,13.

10. (a) Show that the squares form subgroup of ¥, and that its index is 2 if q is odd and 1 if q is
even.
(b) Show that if ¢ = 2%, then every element of F, has a square root in F.
(c) For any d > 0, show that the set of d-th powers form subgroup of F; and that its index is

Sol.: (a) It is easy to check that the squares form a subgroup of F}.

If p is prime, then ¢ = p” is odd if and only if p is an odd prime (and even if and only if ¢ = 2%).
So assume that ¢ = p¥, with p an odd prime, and let a be a primitive root in F, (we know that
F; is cyclic!). Then z € F} is a square if and only if 2(a=1/2 = 1 if and only if z = a®™, for some
m € Z: one implication follows directly from Lagrange Theorem. For the converse, write z = a®,
for some integer s. If 2(371)/2 = (¢%)(@=1)/2 = 5(a=1)/2 = 1 then the fact that a is a primitive root
forces s/2 to be an integer, and s to be even.

Now it is clear that half of the elements in F are squares and the squares form a subgroup of index
2in Fj.

(b) Recall that in characteristic 2, ¢(z) = 2% is an automorphism of For, namely the Frobenius
automorphism. As ¢ is surjective, every element of Far is a square and therefore admits a square
root. In particular the index of the squares in F3, is 1.

11.  (a) Show that x?+2x+2 is an irreducible polynomial in F3[z] and that its roots are generators
of the multiplicative group of its splitting field.
(b) Show that x* + x3 + 2% + x + 1 is irreducible in Fylx] but its roots do not generate the
multiplicative group of its splitting field.



(¢) Show that the roots of a degree n irreducible polynomial with symmetric coefficients (a; =
ap—;, for 1 <i<n/2) do not generate the multiplicative group of its splitting field.

Sol.: (a) The polynomial f(x) = x? + 2z + 2 is irreducible since it has no zero in F3. Hence it
determines a degree 2 extension of F3 isomorphic to F3[z]/(z? + 22 + 2). If « is a root of f, then
one can also write Fs[z]/(z% + 22 + 2) = F3[a]. Then «a generates the multiplicative group of
F3[a* if and only z generates F3[x]/(2% + 2z +2). Computing the powers of 2 modulo the relation
2?2 =22 —-2=x+1, we find
z, 2P=z4+1, B=z@+1)=224+1, z*=22r+1)=2, z°=2z,
% =202 =20+2, 2"=222+2)=2+2, 2®=2(x+2)=1

(b) The polynomial f(x) = x* + 2% + 22 + 2 + 1 is irreducible in Fy[z]: it has no linear factor nor
degree 2 factors. The splitting field of f is Falz]/(f) = {ax® + bz? +cx +d | a,b,c,d € Fo} = Fy;.
Computing the powers of x we find

x, 22, 2%, at=2342 v+, d=z@+2l+r+) =243+ 42 =1.

Hence its roots do not generate the multiplicative group of Fi;.
(c) Let f(z) = 2"+ an—12" '+ ...+ an—12 + 1 be a degree n symmetric polynomial in F[z], for
some prime p. One easily verifies that if « is a root of f, then é is a root as well:
1
a"+a, 1" '+ ta,a+1=0 & —n(l—i—an_la—i—...—i—a”) =0.
«@

Recall that the roots of f are of the form «, o?, ..., a?" "' Hence a~! = ozpi, for0<i<n-—1.
Equivalently, a? ! = 1 and the order of « in FJ. is less or equal than p* + 1, which is strictly
smaller than p™ — 1.

12. Let p be a prime and let a € F), be a non-zero element. Show that x — x 4 a is irreducible in
F,[z]. (Hint: if ¢ is a root, then so is ( +1).

Sol.: Assume that (P — ¢ +a = 0. Since a # 0, also ( # 0. In F,[x], one has
C+)P=(C+D+a=¢"+1-C-14+a=0.
This says that the roots of (P — ( + a = 0 are given by

Ca C+17a<+p_1

Hence they are all distinct and lie in the same extension of F,, say a field isomorphic to Fx, with
k a divisor of p = deg(a? — x + a). But k > 1. Therefore k = p and 2P — x + a is necessarily
irreducible.

13. Show that if F is a field whose multiplicative group is cyclic, then F must be finite.

Sol.: Fix a # %1 a generator of F*. Then a™ = —a, for some m € Z, which implies a?™~2 = 1.
If m > 1, then F* is finite and also F’ is finite.
If m =1, then a = —a < 2a = 0 < char(F) = 2. Write a +1 = a”, for some n # 0,1. Then a is a
zero of the polynomial f(a) = 2™ +x + 1 € Zy[z].
Consider the map

V:Folz]/(z" +x+1) = F, f(z)— f(a).
Since F* is cyclic, the map

Fs[z] = F, f(z)— f(a)

is surjective and its kernel contains the ideal (z"+z+1). Then it factors through Fy[z|/ (2" +2+1).
Consequently also v is surjective. Since Fa[z]/(z™ + x + 1) is finite, so is F.



