Some of these excercises are similar to the ones we did today in class. Others will be discussed in the next lectures.

- 1. Show that in a field of characteristic 3 we have $(x+y)^4 + x^4 + (x-y)^4 + y^4 = 0$.
- 2. Show that any quadratic polynomial in $\mathbf{Z}_p[x]$ can be written as the product of two linear polynomials with coefficients in \mathbf{F}_{p^2} .
- 3. Prove that $f = x^3 + x^2 + 1$ is irreducible in $\mathbb{Z}_2[x]$. Let $K = \mathbb{Z}_2[x]/(f)$. Show hat K is a field of 8 elements. Show that x generates K^* .
- 4. Determine $\#\{a \in \mathbf{F}_{16} : \mathbf{F}_{16} = \mathbf{F}_2(a)\}$ and $\#\{a \in \mathbf{F}_{64} : \mathbf{F}_{64} = \mathbf{F}_2(a)\}.$
- 5. Let \mathbf{F}_q be a finite field. Count the number of irreducible polynomials of degree d in $\mathbf{F}_q[X]$ for $d = 1, \ldots, 4$.
- 6. Let p and r be distinct primes. Show that p is a primitive root modulo $r \Leftrightarrow$ the polynomial $(X^r 1)/(X 1)$ is irreducible in $\mathbf{F}_p[X]$.
- 7. (a) Factor $X^7 1$ and $X^{11} 1$ in $\mathbf{F}_2[X]$. (b) Factor $X^{16} - 1$ and $X^{16} - X$ in $\mathbf{F}_2[X]$.

Let N and Tr denote the norm and trace maps from \mathbf{F}_{p^m} to \mathbf{F}_p . By definition $Tr(x) = \sum_{i=0}^{m-1} \phi^i(x)$ and $N(x) = \prod_{i=0}^{m-1} \phi^i(x)$, where $\phi : \mathbf{F}_{p^m} \longrightarrow \mathbf{F}_{p^m}$ denotes the Frobenius automorphism.

- 8. (a) Show that for every a ∈ F_{p^m} we have N(a) = a^{1+p+...+p^{m-1}} and Tr(a) = a+a^p+...+a^{p^{m-1}}.
 (b) Show that the trace is a surjective homomorphism of additive groups. (Hint: estimate the size of the kernel)
 - (c) Show that the Norm map is a surjective homomorphism $\mathbf{F}_{p^m}^*$ to \mathbf{F}_p^* . (Hint: estimate the size of the kernel)
- 9. (a) For which of the following primes p the ring F_p[x]/(x²+1) is a field? p = 3, 5, 7, 11, 13, 19, 23.
 (b) Show that x² + 1 is irreducible in Z_p[x] if and only if p ≡ 3 mod 4.
- 10. (a) Show that the squares form subgroup of \mathbf{F}_q^* and that its index is 2 if q is odd and 1 if q is even.
 - (b) Show that if $q = 2^k$, then every element of \mathbf{F}_q has a square root in \mathbf{F}_q .
 - (c) For any d > 0, show that the set of d-th powers form subgroup of \mathbf{F}_q^* and that its index is gcd(d, q 1).
- 11. (a) Show that x^2+2x+2 is an irreducible polynomial in $\mathbf{F}_3[x]$ and that its roots are generators of the multiplicative group of its splitting field.
 - (b) Show that $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbf{F}_2[x]$ but its roots do not generate the multiplicative group of its splitting field.
 - (c) Show that the roots of a degree n irreducible polynomial with symmetric coefficients $(a_i = a_{n-i}, \text{ for } 1 \le i \le n/2)$ do not generate the multiplicative group of its splitting field.
- 12. Let p be a prime and let $a \in \mathbf{F}_p$ be a non-zero element. Show that $x^p x + a$ is irreducible in $\mathbf{F}_p[x]$. (Hint: if ζ is a root, then so is $\zeta + 1$).
- 13. Show that if \mathbf{F} is a field whose multiplicative group is cyclic, then \mathbf{F} must be finite.