2017 NAP Lecture Module III, Problem 4 Solution

H. Shiga

Important Direction. At the Mid Term Exam, you are allowed to see the "Summary", and it is not allowed to refer anything else.

Problem III -4] = Excersise Chap. 3-2:

Let p be an odd prime, and set $\zeta = e^{2\pi i/p}$. Consider the field $E = \mathbf{Q}[\zeta]$. It is the splitting field of $f(X) = X^{p-1} + X^{p-2} + \dots + 1$. So (by Thm. 3.10) E/Q is Galois.

(1) Show that $G = \operatorname{Gal}(E/Q)$ is isomorphic to (the cyclic group) $(Z/(pZ))^{\times} \cong Z/(p-1)Z$.

[Proof] The roots of f(X) = 0 is given by ζ^k $(i = 1, \dots, p-1)$. We have a generator $\sigma = \zeta^r$ of the multiplicative group $\{\zeta^k\}$. Here we note that r is a generator of $(\mathbf{Z}/(p\mathbf{Z}))^{\times} = \{r, r^2, \cdots, r^{p-1}\}$. The element g of G is completely determined by the image $g(\sigma) = \zeta^{r^i}$. The correspondence $g \mapsto r^i$ gives the isomorphism between G and $(\mathbf{Z}/(p\mathbf{Z}))^{\times}$. Note that, for $g'(\sigma) = \zeta^{r^{j}}$, we have $g' \circ g(\sigma) = \zeta^{r^{(i+j)}}$.

(2) Let *H* be the subgroup of quadratic residues in $(\mathbf{Z}/(p\mathbf{Z}))^{\times}$. Set $\alpha = \sum_{i \in H} \zeta^i, \beta = \sum_{i \in G-H} \zeta^i$.

Show that

(a) α and β are invariant under the action of H.

[Proof] We use the same r in (1). We have $\alpha = \sum_{i \in H} \zeta^i = \sum_{s:\text{even}} \zeta^{r^s}$ and $\beta = \sum_{i \in G-H} \zeta^i = \sum_{t:\text{odd}} \zeta^{r^t}$. Take any element $h \in H$. It has an expression $h = \zeta^{r^{(2a)}}$ for some $a \in \{1, \dots, (p-1)/2\}$. Then $h\alpha = \sum_{\substack{s: \text{even} \\ (h) = 1}} \zeta^{r^{(s+2a)}} = \alpha$. By the same way we have $h\beta = \beta$.

(b) $\sigma \alpha = \beta, \sigma \beta = \alpha$ for any $\sigma \in G - H$.

[Proof] For any $m \in G - H$, we have an expression $m = \zeta^{r^{(2b+1)}}$. Hence $m\alpha = \sum_{s \in V \in P} \zeta^{r^{(s+2b+1)}} = \beta$.

By the same way we have $m\beta = \alpha$.

(c) $X^2 + X + \alpha\beta \in Q[X].$

[Proof] By (a)(b), we have $g(\alpha\beta) = g\alpha \cdot g\beta = \alpha\beta$ for any $g \in G$. It means $\alpha\beta$ is invariant under the action of G. Namely $\alpha \beta \in \mathbf{Q}$.

(3) By calculating $\alpha\beta$, show that

$$E^{H} = \begin{cases} \boldsymbol{Q}[\sqrt{p}] & p \equiv 1 \pmod{4} \\ \boldsymbol{Q}[\sqrt{-p}] & p \equiv 3 \pmod{4} \end{cases}$$

[Proof] First, note that $\alpha + \beta = \sum_{i=1}^{p-1} \zeta^i = -1$. So, the equation $X^2 + X + \alpha\beta = 0$ has α, β as its roots. As H is a index 2 subgroup of the full Galois group G, E^H/Q is a quadratic extension (according to the Galois correspondence). So, we have $E^H = \mathbf{Q}[\alpha] = \mathbf{Q}[\beta]$. But it is also equal to $\mathbf{Q}[\Delta], \Delta = \sqrt{\delta} = \sqrt{(\alpha - \beta)^2}$.

Here recall the Gauss sum $G_p = \sum \left(\frac{k}{p}\right) e^{2\pi k i/p} = \sum_{s:\text{even}} \zeta^{r^s} - \sum_{t:\text{odd}} \zeta^{r^t} = \alpha - \beta$. We already studied (!) that

$$G_p^2 = \begin{cases} p, & p \equiv 1 \pmod{4} \\ -p, & p \equiv 3 \pmod{4} \end{cases}$$

so we have the required conclusion. (By the way $\alpha\beta = \frac{1}{4}((\alpha+\beta)^2 - (\alpha-\beta)^2) = \frac{1}{4}(1\mp p)$. We did not use it, sorry.)