2017 NAP Lecture Module III, Problem 4

H. Shiga

Jun. 5, 2017

To solve the following problems, we assume all arguments in Chapter 1 and Chapter 2.

Problem III -4] = Excersise Chap. 3-2.

Let p be an odd prime, and set $\zeta = e^{2\pi i/p}$. Consider the field $E = \mathbf{Q}[\zeta]$. It is the splitting field of $f(X) = X^{p-1} + X^{p-2} + \cdots + 1$. So (by Thm. 3.10) E/\mathbf{Q} is Galois.

(1) Show that $G = \operatorname{Gal}(E/Q)$ is isomorphic to (the cyclic group) $(Z/(pZ))^{\times} \cong Z/(p-1)Z$.

(2) Let *H* be the subgroup of quadratic residues in $(\mathbf{Z}/(p\mathbf{Z}))^{\times}$. Set $\alpha = \sum_{i \in H} \zeta^i, \beta = \sum_{i \in G-H} \zeta^i$.

Show that

(a) α and β are invariant under the action of H.

- (b) $\sigma \alpha = \beta, \sigma \beta = \alpha$ for any $\sigma \in G H$.
- (c) $X^2 + X + \alpha\beta \in Q[X].$
- (3) By calculating $\alpha\beta$, show that

$$E^{H} = \begin{cases} \boldsymbol{Q}[\sqrt{p}] & p \equiv 1 \pmod{4} \\ \boldsymbol{Q}[\sqrt{-p}] & p \equiv 3 \pmod{4} \end{cases}$$

NAP Lecture Module III, Exercises Sheet 4

Given Name

Family Name

Status

Specialized Field