2017 NAP Lecture Module III, Problem 2, Solution

May 30,'17, H. Shiga

We suppose all the results in the text up to Prop. 3.20..

Let $f(X) \in \mathbf{Q}[X]$ be an irreducible cubic polynomial, and let α be a real root of f(X) = 0. Set $E = \mathbf{Q}[\alpha]$.

Letting L be the splitting field of f(X), we have only following two possibilities:

(a) E/Q is Galois ($\iff L = E \iff \sharp \operatorname{Gal}(E/Q) = 3$),

(b) E/\mathbf{Q} is not Galois ($\iff E \subset_{\neq} L \iff \sharp \operatorname{Gal}(L/\mathbf{Q}) = 6$).

Problem 2-1. Show the following statements.

1) If f(X) has a complex (non real) root, $Q[\alpha]$ is not Galois over F.

[Solution] f(X) is the minimal polynomial of α . If $\mathbf{Q}[\alpha]$ is Galois, it must be the splitting field of f(X). But, $\mathbf{Q}[\alpha]$ is contained in \mathbf{R} , it is a contradiction.

2) Under the condition 1), let L be the splitting field of f. Then $\operatorname{Gal}(L/F) \cong \mathfrak{S}_3$.

[Solution] Because $Q[\alpha]$ is a proper subfield of L, we have $3 = [Q[\alpha] : Q] < [L : Q]$. On the other hand $\operatorname{Gal}(L/F)$ is a subgroup of \mathfrak{S}_3 . So we must have $\operatorname{Gal}(L/F) \cong \mathfrak{S}_3$.

3) In case of (b), the discriminant δ of f(X) should not be a square in Q.

[Solution] Set $\alpha = \alpha_1.\alpha_2, \alpha_3$ be the roots of f(X). Let us consider the subgroup $\mathfrak{A}_3 \subset \mathfrak{S}_3 = \operatorname{Gal}(L/F)$. Corresponding to this group, we have a Galois extension M/\mathbb{Q} of degree 2. Here M is the fixed field of \mathfrak{A}_3 . So $M = \mathbb{Q}[\Delta], \Delta = (\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)(\alpha_3 - \alpha_1)$. Hence Δ should not belong to \mathbb{Q} . Consequently, $\delta = \Delta^2$ is not a square in \mathbb{Q} .

Problem 2-2.

1) Let $f(X) = X^3 - aX - b \in \mathbf{Q}[X]$ be an irreducible cubic polynomial. Let α be a real root of f(X). Show a (necessary and sufficient) condition that E/\mathbf{Q} , $(E = \mathbf{Q}[\alpha])$ becomes to be Galois.

[Solution] Let us show "E/Q:Galois $\iff \delta \in Q^2$ ". In Problem 2-1 (3) we showed " \Leftarrow ", so it is enough to see \implies .

Suppose E/\mathbf{Q} : Galois. Because $[E:\mathbf{Q}] = 3$, $\operatorname{Gal}(E/\mathbf{Q})$ is a subgroup of \mathfrak{S}_3 of index 2. It must be \mathfrak{A}_3 . $\Delta = (\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)(\alpha_3 - \alpha_1)$ is invariant under the action of \mathfrak{A}_3 . It means $\Delta \in \mathbf{Q}$. Consequently δ should be a square in \mathbf{Q} .

2) For $f(X) = X^3 - 3X - b$, $(b \in \mathbb{Z})$, find all cases so that we have Galois E/\mathbb{Q} .

(By the way, for $f(X) = X^3 - 3X - b$, $(b \in \mathbf{Q})$, the problem is a bit challenging. How about the case $f(X) = X^3 - aX - 1$, $(a \in \mathbf{Q})$? Very challenging)

NAP Lecture Part III Problem 2 Sheet

Given Name

Family Name

Date: d /m /2017

Status Specialized Field

[Solutions]