2017 NAP Lecture Module III, Problem 2

May 30,'17, H. Shiga

We suppose all the results in the text up to Prop. 3.20..

Let $f(X) \in \mathbf{Q}[X]$ be an irreducible cubic polynomial, and let α be a real root of f(X) = 0. Set $E = \mathbf{Q}[\alpha]$.

Letting L be the splitting field of f(X), we have only following two possibilities:

(a) E/\mathbf{Q} is Galois ($\iff L = E \iff \sharp \operatorname{Gal}(E/\mathbf{Q}) = 3$),

(b) E/\mathbf{Q} is not Galois ($\iff E \subset_{\neq} L \iff \sharp \operatorname{Gal}(L/\mathbf{Q}) = 6$).

<u>Problem 2-1.</u> Show the following statements.

1) If f(X) has a complex (non real) root, $f[\alpha]$ is not Galois over F.

2) Under the condition 1), let L be the splitting field of f. Then $\operatorname{Gal}(L/F) \cong \mathfrak{S}_3$.

3) In case of (b), the discriminant δ of f(X) should not be a square in Q.

<u>Problem 2-2</u>.

1) Let $f(X) = X^3 - aX - b \in \mathbf{Q}[X]$ be an irreducible cubic polynomial. Let α be a real root of f(X). Show a (necessary and sufficient) condition that E/\mathbf{Q} becomes to be Galois.

2) For $f(X) = X^3 - 3X - b$, $(b \in \mathbb{Z})$, find all cases so that we have Galois E/\mathbb{Q} .

(By the way, for $f(X) = X^3 - aX - b$, $(1 \le a \le 9)$, we have only 6 Galois E/Q's.)

NAP Lecture Part III Problem 2 Sheet

Given Name

Family Name

Date: d /m /2017

Status Specialized Field

[Solutions]