2017 NAP Lecture Module III, Problem 1, Solutions

May 28,'17, H. Shiga

We wish to recall several fundamental facts among what we have already studied in the previous Modules.

Problem 1-1] Set $f(X) = X^4 + X + 1$, $P(X) = X^3 - X + 1 \in \mathbf{Q}[X]$. Show the procedure to obtain gcd(f, P) by the Euclidean algorism.

Problem 1-2]. Let α be a solution of the above f(X) = 0 and set $E = \mathbf{Q}[\alpha]$. Show the inverse of $P(\alpha)$ in E, provided $P(\alpha) \neq 0$.

Problem I-3]. Let F be a field and let f(X) be an irreducible polynomial in F[X]. Let α be a root of f(X). By using the Euclidean method, show that any $Q[\alpha] \in F[\alpha] - \{0\}$ has its inverse in $F[\alpha]$.

(This means that $F(\alpha) = F[\alpha]$. So, in this case, we write $F[\alpha]$ instead of the field $F(\alpha)$ in the later sections).

[Solutions]

1-1,2] Set $Q_1 = x, Q_2 = x, Q_3 = -1/2x - 1/4, R_1 = 1 + x^2, R_2 = 1 - 2x, R_3 = 5/4$. By the Eucidean algorism we have $1 = 4/5((1 + Q_2Q_3)f + (-Q_3 - Q_1 - Q_2Q_3Q_1)P)$. Setting $U(X) = \frac{1}{5}(1 - 2x + x^2 + 2x^3), V(X) = 1/5(4 - x - 2x^2)$, we have U(X)P(X) + V(X)f(X) = 1. So $P(\alpha)U(\alpha) = 1$ in $\mathbf{Q}[\alpha]$. Hence $U(\alpha) = P(\alpha)^{-1}$.

1-3] Because f(X) is irreducible, by the Euclidean algorism we have some $U(X), V(X) \in F[X]$ such that U(X)Q(X) + V(X)f(X) = 1. It means $U(\alpha)Q(\alpha) = 1$ in $F[\alpha]$.

1-4) Set $g(X) = X^3 - p = X^3 - 0 \cdot X^2 - 0 \cdot X - p = a_0 X^3 + a_1 X^2 + a_2 X + a_3$. It holds $p / a_0, p | a_i (i = 1, 2, 3), p^2 / a_3$. By the Eisenstein criterion = Prop. 1.16, $f(X) \in \mathbf{Q}[X]$ is irreducible.

1-5) $F = \mathbf{Q}[\alpha]$ is contained in \mathbf{R} . On the other hand, $X^3 - 2$ has complex roots $\alpha' = \omega \alpha, \alpha'' = \omega^2 \alpha, (\omega = e^{2\pi i/3})$. So F does not contain the conjugates α', α'' . It means that F/\mathbf{Q} is not a normal extension. By observing the condition Thm. 1.10 (c), $\mathbf{Q}[\alpha]/\mathbf{Q}$ is not a Galois extension.

[Irreducibility of f(X)] First, we note that f(X) is reducible in $\mathbf{Q}[X] \iff$ reducible in $\mathbf{Z}[X]$ (Gauss' lemma = Prop. 1.13).

(i) f(X) does not have a decomposition into quadratic polynomials in $\mathbf{Z}[X]$.

Because] If we have $f(X) = (x^2 + a_1X + b_1)(x^2 + a_2X + b_2), (a_1, a_2, b_1, b_2 \in \mathbb{Z})$ By its expansion, we obtain $a_2 = -a_1, b_2 = a_1^2 - b_1$. Cosequently, $f(X) = (a_1^2 - b_1)b_1 + a_1((a_1^2 - b_1) - b_1)x + x^4$. So, we must have $|a_1| = |b_1| = 1$. But in this case the constant term can not be 1.

(ii) f(X) has no linear component.

Because] f(X) has no solution as an element of $F_7[X]$, so f(X) has no solution as an element of Z[X]. By the above arguments, we obtain that f(X) is irreducible in Q[X].