
NAP PROBLEM SET #1, SOLUTIONS

ROGER AND SYLVIA WIEGAND

1. We follow the procedure in section 1.8 of the book. Also, we will use “−1”
instead of “2” (since coefficients are in F3).

Using the division algorithm thrice, we get

X5 +X + 1 = (X2 −X − 1)(X3 +X2 −X − 1) + (X2 −X)

X3 +X2 −X − 1 = (X − 1)(X2 −X) + (X − 1)

X2 −X = X(X − 1) + 0

The GCD is the last non-zero remainder, namely X − 1. Using the first equation,
we express X2 −X in terms of α =def X3 +X2 −X − 1 and β =def X5 +X + 1:

eq1.1eq1.1 (0.1) X2 −X = −(X2 −X − 1)α+ β .

Now use the second equation to express X − 1 in terms of X2 −X and α, plug in
the expression for X2 −X from (0.1), and combine terms, getting the equation

X − 1 = (X3 +X2 − 1)α+ (−X + 1)β .

(Of course it would be a good idea to check this last equation.) �

2. Neither 1 nor −1 is a root of f(X) = X4−10X2+1, so by Proposition 1.11 f(X)
has no linear factors. Thus we assume that f(X) = g(X)h(X), where g(X) and
h(x) are quadratic polynomials in Q[X], and we seek a contradiction. Letting c be
the leading coefficient of g(X), and replacing g(X) and h(X) by c−1g(X) and ch(X)
respectively, we may assume that both g(X) and h(X) are monic. Moreover, by
Proposition 1.14, both g(X) and h(X) are in Z[X]. (One could also use Proposition
1.13 (Gauss’s Lemma) to get to this point.)

Write g(X) = X2 +aX+b and h(X) = X2 +cX+d. Comparing constant terms
in the expression

X4 − 10X2 + 1 = (X2 + aX + b)(X2 + cX + d) ,

we have

eq2.1eq2.1 (0.2) b = d = ±1 .

Comparing coefficients of X3, we see that 0 = a+ c, that is,

eq2.2eq2.2 (0.3) c = −a .
Comparing coefficients of X2, we find that −10 = b+ ac+ d; combining this with
(0.3), we have

eq2.3eq2.3 (0.4) a2 = b+ d+ 10 .

Now we combine (0.4) with (0.2), getting either

a2 = 12 or a2 = 8 ,

the desired contradiction. �

3. Let’s prove uniqueness first. Since ϕ̂(c) = ϕ(c) for each c ∈ R and ϕ̂(X) = α,
and since ϕ̂ is required to be a ring homomorphism, it follows that

eq3.1eq3.1 (0.5) ϕ̂(amX
m + · · ·+ a1X + a0) = ϕ(am)αm + · · ·+ ϕ(a1)α+ ϕ(a0) .

Thus, for each f(X) ∈ R[X], we have an explicit formula for ϕ̂(f(X)), and this
proves uniqueness. To complete the proof, we just have to show that the map
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ϕ̂ : R[X]→ S given by (0.5) is a homomorphism. It’s tempting to say that this is
obvious, but let’s try to give a proof.

We have ϕ̂(1R[X]) = ϕ(1R) = 1S . (The first equality is from the formula (0.5),
and the second holds because ϕ is assumed to be a ring homomorphism.) Now
we have to show that ϕ̂ preserves addition and multiplication. Suppose f(X) =
g(X)+h(X) in R[X]. We want to show that ϕ̂(f(X)) = ϕ̂(g(X))+ ϕ̂(h(X)). Write
g(X) = bmX

m + · · · + b0 and h(X) = cmX
m + · · · + c0. (If g(X) and h(X) don’t

have the same degree, we just add on some zero terms to one or the other.) Now

f(X) = (bm + cm)Xm + · · ·+ (b0 + c0) ,

and by (0.5) we have ϕ̂(f(X)) = ϕ(bm + cm)αm + · · · + ϕ(b0 + c0). Since ϕ is a
homomorphism, the right-hand side of this equation is

(ϕ(bm) + ϕ(cm))αm + · · ·+ (ϕ(b0) + ϕ(c0)) =

(ϕ(bm)αm + · · ·+ ϕ(b0)) + (ϕ(cm)αm + · · ·+ ϕ(c0)) =

ϕ̂(g(X)) + ϕ̂(h(X)) .

As for multiplication, an easy and similarly dreary computation shows that

ϕ̂(ch(X)) = ϕ̂(c)ϕ̂(h(X)) and ϕ̂(Xh(X)) = ϕ̂(X)ϕ̂(h(X)) ,

for all c ∈ R and h(X) ∈ R[X]. Thus ϕ̂ respects addition, multiplication by
constants, and multiplication by X. Since multiplication by any g(X) ∈ R[X] can
be accomplished by repeatedly using these three operations, we see that ϕ̂ preserves
multiplication. �

4. Let G = 〈x〉, and write g = xm and h = xn, where m and n are non-negative
integers. If m is even, say, m = 2`, then g = (x`)2, contrary to our assumption.
Thus m is odd, and similarly n is odd. Therefore m+ n is even, say, m+ n = 2q.
Now we have

gh = xmxn = xm+n = x2q = (xq)2 .

This shows that gh is a square. (Note that the proof did not use the hypothesis
that |G| is even. The result is vacuously true if |G| is odd, since in that case every
element of G is a square.)

5 a): If X4 + X2 + 1 is not irreducible, we obtain, exactly as in the solution of
Problem 2, a factorization

X4 +X2 + 1 = (X2 + aX + b)(X2 + cX + d) ,

where a, b, c, d ∈ Z. Comparing coefficients, we obtain (0.2) and (0.3) as well as the
followig variant of (0.4):

a2 = b+ d− 1 .

From (0.2), we see that b = d = 1 and a2 = 1. Thus either a = −c = 1 or
a = −c = −1. We learn nothing new from comparing coefficients of X. Hmm, it is
beginning to look as if the polynomial is reducible, and, indeed, we have

X4 +X2 + 1 = (X2 +X + 1)(X2 −X + 1) .

The factors are both irreducible since they have no rational roots. (This shows
that the skeptical approach, trying to prove irreducibility, can sometimes lead to a
factorization. Whoo hoo!) �
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5 b) The approach in Problems 2 and 5 a) would work, but for variety we can use
Eisenstein. Make the substitution X = Y + 1. We have

g(Y ) =def (Y + 1)4 + 1 = Y 4 + 4Y 3 + 6Y 2 + 4Y + 2 .

Using Eisenstein with p = 2, we conclude that g(Y ) is irreducible in Q[Y ]. Why
does this imply that f(X) =def X4 + 1 is irreducible? Well, if f(X) = h(X)k(X)
were a non-trivial factorization, we would have

g(Y ) = (Y + 1)4 + 1 = f(Y + 1) = h(Y + 1)k(Y + 1) ,

contradicting irreducibility of g(Y ). �

5 c) X5 − 1 = (X − 1)(X4 +X3 +X2 +X + 1). The first factor is irreducible, and
the second one is too, by Problem 5 e).

5 d) This problem turned out to be much harder than we had intended. It will
be very interesting to see if any of you got it by an easier method than we found.
Anyway, to do penance for our carelessness, we will present a solution.

If f(X) = X9 +X3 + 1 is not irreducible, then there is a factorization

X9 +X3 + 1 = g(X)(h(X),

where g(X), h(X) ∈ Z[x] and both have degrees between 1 and 8.

Then in F2, X9 +X3 + 1 = g(X)(h(X), where 1 ≤ deg(g),deg(h) ≤ 8.
We make some observations about irreducible polynomials in F2[X]:
1. The only irreducible polynomials of degrees ≤ 3 are:

X,X + 1, X2 +X + 1, X3 +X2 + 1, X3 +X + 1.

2. f(X) has no roots in F2 and so it has no linear factors. Moreover, in F2[X],

X9 +X3 + 1 = (X2 +X + 1)(X7 +X6 +X4 +X3) + 1,

X9 +X3 + 1 = (X3 +X2 + 1)(X6 +X5 +X4 +X2 + 1)

X9 +X3 + 1 = (X3 +X + 1)(X6 +X4 +X3 +X2 + 1) + (X2 +X)

(X6 +X5 +X4 +X2 + 1) = (X3 +X2 + 1)(X3 +X2 + 1) + 1

That is, f(X) can be factored in F2 but only in one way, as a product of the
degree 3 and degree 6 polynomials shown, which are irreducible. The polynomial
X6 + X5 + X4 + X2 + 1 is irreducible in F2[X], because if not it would have an
irreducible factor of degree ≤ 3 in F2[X]. It has no roots in F2, since f(X) doesn’t
and it is a factor of f(X). Similarly, it has no irreducible factor of degree 2, and
also doesn’t have the factors X3 +X2 + 1 or X3 +X + 1.

By the equation above, that

X9 +X3 + 1 = g(X)h(X) =⇒ X9 +X3 + 1 = g(X)(h(X),

we have that deg g = 3, deg h = 6.
We may assume that g, h are monic and have integer coefficients by Gauss’s

Lemma and arguments from class. Also we may suppose that

g(X) = X3 +X + 1 and h(X) = X6 +X5 +X4 +X2 + 1,

where the polynomials are in F2[X]. Write

g(X) = X3 +aX2 +bX+c, h(X) = X6 +e5X
5 +e4X

4 +e3X
3 +e2X

2 +e1X+e0.

If we require that f(X) = g(X)h(X), we see immediately that a ≡ 1 (mod 2), b ≡ 0
(mod 2), and c = e0 = 1 or c = e0 = −1.
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For convenience, we separate into two cases: Case i: c = e0 = 1, and
Case ii: c = e0 = −1.

In case i, we are looking at Equation 0.6:

eq5.d.1eq5.d.1 (0.6) X9+X3+1 = (X3+aX2+bX+1)(X6+e5X
5+e4X

4+e3X
3+e2X

2+e1X+1)

We proceed by matching up coefficients of powers of X in the product from Equa-
tion 0.6:
X8 term: 0 = e5 + a =⇒ e5 = −a .

X7 term: 0 = e4 + ae5 + b =⇒ e4 = −ae5 − b = a2 − b =⇒ e4 = a2 − b .

X term: 0 = b+ e1 =⇒ e1 = −b .

X2 term: 0 = a+ be1 + e2 =⇒ e2 = −a− be1 = b2 − a =⇒ e2 = b2 − a .

X3 term: 1 = 1 +ae1 + be2 + e3 =⇒ e3 = −ae1− be2 = −a(−b)− b(b2−a) =⇒
e3 = 2ab− b3 .

Now rewrite Equation 0.6:

eq5.d.2eq5.d.2 (0.7)
X9+X3+1 = (X3+aX2+bX+1)(X6−aX5+(a2−b)X4+(2ab−b3)X3+(b2−a)X2−bX+1)

Now we equate the other powers of X:

X6 term: 0 = 2ab − b3 + a3 − ab − ab + 1 = −b3 + a3 + 1 =⇒ b3 = a3 + 1 .

Since a, b are integers, the only possibilities are a = −1, b = 0 or a = 0, b = 1 .

The solution a = 0, b = 1 does not fit the requirements that a ≡ 1 (mod 2), so
we discard that.
X4 term: 0 = −b+ a(b2 − a) + b(2ab− b3) + a2 − b.
If we put a = −1, b = 0 into the last equation we have that 0 = 0+(−1)(1)+0+1.

No contradiction yet.
X5 term: 0 = −b2 − a+ a(2ab− b3) + b(a2 − b)− a.
If we put a = −1, b = 0 into this equation we have that 0 = 0 + 1 + 0 + 0 + 1, a

contradiction.
Therefore, in case i, there is no such factorization.
In case ii, we do a similar analysis and use that a ≡ 1 (mod 2), b ≡ 0 (mod 2).

I am tired of typing, but I can show you if you’d like.
The upshot is that the polynomial is irreducible. Whew!! This is almost (but

not quite) enough to make us try to learn to use PARI or some other computer
algebra program!

5 e). As in the solution to 5 b), we substitute X = Y + 1. Let

f(X) = X4 +X3 +X2 +X + 1 =
X5 − 1

X − 1
.

Let

g(Y ) = f(Y + 1) =
(Y + 1)5 − 1

Y + 1− 1
=
Y 5 + 5Y 4 + 10Y 3 + 10Y 2 + 5Y

Y
=

Y 4 + 5Y 3 + 10Y 2 + 10Y + 5 .

Eisenstein implies that g(Y ) is irreducible, and the argument in 5b) shows that
f(X) is too. �


