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1. Milne, Exercise 1-1 (p. 25)

The systematic approach would be to use the Division Algorithm for the first
part and the Euclidean Algorithm for the second part, but often it’s easier just to
try a few things and see what happens. Here goes: For the first problem, we have

(α2+α+1)(α2−α) = α4−α = α(α3−α2+α+2)+α3−α2−3α = (α3−α2+α+2)−4α−2 ,

so the answer is −4α− 2. For the second problem, we have

(α− 1)α2 = α3 − α2 = −α− 2 , and hence

(α− 1)(α2 + 1) = (−α− 2) + (α− 1) = −3 .

Therefore (α− 1)−1 = − 1
3α

2 − 1
3 . Let’s check:

−1

3
(α2 + 1)(α− 1) = −1

3
(α3 − α2 + α− 1) = −1

3
(−3) = 1 .

Hurray!

2. Milne, Exercise 1-2 (p. 25)

Since
√

2 is irrational and is a root of X2 − 2, we know that X2 − 2 is the
minimimal polynomial. Therefore [Q(

√
2) : Q] = 2. Next let’s show that

√
3 /∈

Q(
√

2). Assuming the contrary, we have
√

3 = a+b
√

2 for suitable rational numbers

a and b. Squaring both sides, we get 3 = a2 + 2ab
√

2 + 2b2, whence

2ab
√

2 = 3− a2 − 2b2 .

This equation and the fact that
√

3
2 and

√
2 are irrational show that both a and b

are non-zero. Thus we have
√

2 =
3− a2 − 2b2

2ab
∈ Q ,

contradiction. We have shown that
√

3 /∈ Q(
√

2). Since
√

3 is a root of X2 − 3 ∈
Q(
√

2)[X], it follows that [Q(
√

2,
√

3) : Q(
√

2)] = 2. By mulitplicativity of degrees,

[Q(
√

2,
√

3) : Q] = 2 · 2 = 4.

3. Milne, Exercise 1-5 (p. 25).

A picture showing degrees is helpful, but I won’t even try to make a LaTeX
picture. Please follow along with your own picture. Choose a field K containing E
and also containing a root α of f(X). Then [F (α) : F ] = n. Let ` = [E(α) : E].
Since α is a root of f(X) ∈ E[X], the minimum polynomial g(X) ∈ E[X] of α
over E is a divisor of f(X), whence ` = deg(g) ≤ n. From your picture and
multiplicativity of degrees, we see that n · [E(α) : F (α)] = [E(α) : F ] = m`. In
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particular, n | m`. Since n and m are relatively prime, it follows that n | `. We
already know that ` ≤ n, so in fact ` = n. Therefore f(X) and g(X) have the same
degree; since g(X) | f(X) we have f(X) = cg(X) for some non-zero constant c.
Since g(X) is irreducible over E, so is f(X).

Remark: This illustrates a powerful method of showing that a polynomial
f(X) ∈ E[X] is irreducible: Adjoin a root α of f(X) and show (somehow) that
[E(α) : E] = deg(f).

4. Milne, Exercise 2-1 (p. 33)

(a) Obviously F×2 ⊆ S(E) ⊆ F×. To show that S(E) is a subgroup of F×, let
α, β ∈ S(E) and choose γ, δ ∈ E such that γ2 = α and δ2 = β. Then (γδ)2 = αβ.
This shows that αβ ∈ S(E). Also, we have (γ−1)2 = γ−2 = (γ2)−1 = α−1, so
α−1 ∈ S(E). (The hypotheses that [E : F ] = 2 and char(F ) 6= 2 are irrelevant to
this part.)

(b) “if”: Choose α ∈ E \ F with minimum polynomial X2 + aX + b ∈ F [X].

Then α = −a±
√
a2−4b
2 , and clearly E = F (γ), where γ =

√
a2 − 4b. (The Quadratic

Formula works whenever the characteristic is different from two; a consequence
is that every extension of degree 2 is obtained by adjoining a square root.) Put
c = γ2 ∈ S(E). Then X2 − c is the minimal polynomial of γ. Since c ∈ S(E)
we know c ∈ S(E′), so there is an element γ′ ∈ E′ with (γ′)2 = c. Since c is
not a square in F , γ′ /∈ F , so E′ = F (γ′). Moreover γ and γ′ have the same
minimum polynomial over f (namely, X2 − c), so there’s a uinque F -isomorphism
E = F (γ)→ F (γ′) = E′ taking γ to γ′.

“only if”: Let p ∈ S(E). Choose q ∈ E such that q2 = p. Then (ϕ(q))2 =
ϕ(q2) = ϕ(p) = p, so p ∈ S(E′). This shows that S(E) ⊆ S(E′), and the reverse
inclusion holds by symmetry.

(c) List the prime numbers: p1, p2, p3, . . . , and let Ei = Q(
√
pi). Then pi ∈ S(Ei)

for each i. A slight modification of the argument used in Problem 2 (Milne, Exercise
1.2) shows that pi /∈ S(Ej) if i 6= j. Now apply (b).

(d) Let F = Z/pZ, the prime field of order p. Now F× is a (cyclic) group of even
order, so it has an element of order 2. This means that the group homomorphism
σ : F× → F× taking g to g2 has non-trivial kernel. Thus this homomorphism
is not injective and therefore not surjective. In other words, there’s an element
a ∈ F× \ (F×)2. Then [F (

√
2) : F ] = 2, and hence F (

√
2) is a field of order p2.

This proves the existence of fields of order p2.
For uniqueness, we suppose E is any field of order p2. Then [E : F ] = 2, and

by the Quadratic Formula we have E = F (
√
b) for some b ∈ F× \ (F×)2. Now we

use the fact that F× is cyclic, so that there is a unique element of order two. This
means that (F×)2, which is the image of the homomorphism σ above, has index 2
in F×. Therefore the only subgroup of F× properly containing (F×)2 is F× itself.
Since b ∈ S(E) \ (F×)2, S(E) contains (F×)2 properly and hence must be all of
F×. Now apply (b).

5. Milne, Exercise 2.2 (p. 33)

Let α be a root of f(X) = Xp −X − a in some extension field K. Notice that
f(α + 1) = (α + 1)p − (α + 1) − a = αp + 1 − α − 1 − a = f(α) = 0. Thus
α, α+ 1, . . . α+ p− 1 are all roots of f(X) in K. Therefore f(X) factors as follows:

f(X) = (X − α)(X − (α+ 1)) · · · (X − (α+ p− 1)) in K[X] .



NEPAL ALGEBRA PROJECT 2017MODULE 2 — HOMEWORK #1: SOLUTIONSWEDNESDAY, 24 MAY, 20173

Now suppose f(X) = g(X)h(X) in F [X], where g and h are monic with positive
degrees r and s, respectively. By unique factorization in K[X], g(X) has to be a
product of r of the linear factors displayed above. The coefficient of Xr−1 in g(X) is
the negative of the sum of the roots, that is, −((α+ c1) + (α+ c2) + · · ·+ (α+ cr)),
where c1, . . . , cr are distinct elements of the prime field. This coefficient, which
must be in F , is −rα− (c1 + · · ·+ cr). Since the ci are in the prime field and since
r is a non-zero element of the prime field, it follows that α ∈ F . Therefore all roots
of f(X) are in F , and F splits into the product of p distinct linear factors in F [X].
This proves (a). For (b), Gauss’s Lemma shows that if f(X) = Xp−X − 1 factors
in Q[x], then it factors in Z[X], and hence in (Z/pZ)[X]. By part (a) it splits into
linear factors in (Z/pZ)[X] and, in particular, has a root β ∈ Z/pZ. But βp = β
by Fermat’s Theorem), so obviously f(β) 6= 0, contradiction.

6. Milne, Exercise 2.3 (p.33)

Let α = 5
√

2, and let ζ = e
2πi
5 , a primitive fifth root of one in C. The roots

of X5 − 2 are α, ζα, ζ2α, ζ3α, and ζ4α, so the splitting field is K = Q(α, ζ). Now
X5 − 2 is irreducible over Q by Eisenstein, so [Q(α) : Q] = 5. Also, ζ is a root of
g(X) = X4 +X3 +X2 +X + 1. By Eisenstein, g(X + 1) is irreducible over Q, so
g(X) is also irreducible. (Any factorization of g(X) would lead to a factorization
of g(X + 1) by substituting.) Of course [Q(α, ζ) : Q(α)] ≤ 4, so [K : Q] ≤ 20. But
[K : Q] has to be a multiple of both 4 and 5, so the degree is 20.

7. Milne, Exercise 2.6 (p.33)

Just apply Proposition 2.12 repeatedly, till the new polynomial is separable.
(Sorry, no time for details.)

8. Find the splitting field, and its degree over Q, for the polynomial f(X) =
X4 +X2 + 1 ∈ Q[X]. (Hint: Think about (X2 − 1)f(X).)

We have (X2 − 1)f(X) = X6 − 1. Let ζ = e
2πi
6 , a primitive sixth root of one

in C. The roots of X6 − 1 are 1, ζ, ζ2, ζ3 = −1, ζ4, ζ5, so the roots of f(X) are
ζ, ζ2, ζ4, ζ5, and the splitting field of f(X) over Q is Q(ζ). Since ζ2 − ζ + 1 = 0,
[Q(ζ) : Q] = 2.

9. Find an irreducible polynomial f ∈ Q[X], with roots α1, α2, α3, α4 ∈ C such
that

[Q(α1, α2) : Q] 6= [Q(α3, α4) : Q] .

(In particular, the fields Q(α1, α2) and Q(α3, α4) are not isomorphic. The point of
this exercise is to clarify the last sentence of Remark 2.9 (b), in Milne (on p. 30):
We know that Q(αi) ∼= Q(αj) for all i, j, but adjoining two roots is very different.)

Let f(X) = X4 − 31. It’s irreducible by Eisenstein. The roots are ±α and ±iα,

where α = 4
√

31. We have [Q(α,−α) : Q] = 4, but [Q(α, iα) : Q] = 8. (Of course
31 could be replaced by your favorite prime number.)


