Nepal Algebra Project 2017

Tribhuvan University

Module 1 — Problem Set 2 (MW)

Correction

1. Let G be a finite subgroup of the multiplicative group K^{\times} of a field K. If n is the order of G, then by Lagrange's theorem any element x of G satisfies $x^n = 1$, hence the polynomial $X^n - 1$ has at least n roots in K, namely the elements in G. Since K is a field, this polynomial, which has degree n, has not more than n roots in K. We deduce that G is the set of roots of the polynomial $X^n - 1$ in K:

$$X^n - 1 = \prod_{x \in G} (X - x).$$

There are several proofs of the fact that G is cyclic. One of them is given in Milne, exercise 1.3. Here is another one which uses the fact that in a finite abelian group of exponent e, there is an element of order e; this result follows from the structure theorem of finite abelian groups. Recall that the exponent of a finite multiplicative group G is the lcm of the orders of the elements in G: it is the smallest integer $e \ge 1$ such that $x^e = 1$ for all $x \in G$.

By Lagrange's theorem, the exponent e of G divides n. Any x in G is a root of the polynomial $X^e - 1$. Since G has order n, we get n roots in the field K of this polynomial $X^e - 1$ of degree $e \le n$. Hence e = n. Since there exists at least one element in G of order e, we deduce that G is cyclic.

- 2. By Lagrange's Theorem, if there exists a subgroup of order m in a group of order n, then m divides n.
 - For the converse, we assume that G is cyclic, generated by x, and that m divides n. Let n = dm. The element $y_d = x^d$ of G has order m, hence the subgroup H_m generated by y_d is a subgroup of G of order m. This subgroup is cyclic.

For the unicity, we consider a subgroup H of G of order m. An element z of H can be written $z = x^{\ell}$ with $\ell \in \mathbb{Z}$; since it belongs to H, it satisfies $z^m = 1$, hence $x^{\ell m} = 1$, and therefore n divides ℓm , which means that d divides ℓ . This proves that z belongs to H_m . Therefore $H = H_m$ and the unique subgroup of G of order m is the set of z in Gsatisfying $z^m = 1$.

- **3.** A field of zero characteristic contains \mathbb{Q} , hence is infinite. Therefore a finite field F has a nonzero characteristic; since a field is a domain, this characteristic is a prime number, and the prime field of F is \mathbb{F}_p . As a vector space over \mathbb{F}_p , F has finite dimension, say r, hence F has p^r elements. If E is a subfield of F, then E contains \mathbb{F}_p ; let s be the dimension of E as a \mathbb{F}_p vector space. From the multiplicativity of the degrees $[F : E] \cdot [E : \mathbb{F}_p] = [F : \mathbb{F}_p]$ with $[E : \mathbb{F}_p] = s$ and $[F : \mathbb{F}_p] = r$, it follows that s divides r and that the dimension of F as a E-vector space is [F : E] = r/s. The subfield E with p^s elements is the set of roots of the polynomial $X^{p^s} X$.
- 4. The stem field is defined for irreducible polynomials only. The question should have be phrased:
 - Are the polynomials $X^2 + 1$ and $X^2 X + 1$ irreducible
 - over \mathbb{Q} ?
 - over \mathbb{F}_p for p = 2, 3, 5, 7? For p any prime?

When the answer is yes, the degree of the stem field over the corresponding field is the degree of the polynomial, namely 2.

Since the polynomials have degree 2 and no root in \mathbb{Q} , they are irreducible over \mathbb{Q} .

The polynomial $x^2 + 1$ is a square in $\mathbb{F}_2[X]$, namely $(X + 1)^2$, while the polynomial $X^2 - X + 1$ (which is the same as $X^2 - X + 1$) has no root in \mathbb{F}_2 , hence is irreducible in $\mathbb{F}_2[X]$.

The polynomial $X^2 + 1$ has no root in \mathbb{F}_3 , hence is irreducible in $\mathbb{F}_3[X]$, while $X^2 - X + 1 = (X + 1)^2$ in $\mathbb{F}_3[X]$. Assume now that p is a prime ≥ 5 .

Since $X^4 - 1 = (X^2 + 1)(X^2 - 1)$, an element in \mathbb{F}_p is a root of $X^2 + 1$ if and only if it has order 4. Similarly, since $X^3 - 1 = (X - 1)(X^2 + X + 1)$, an element in \mathbb{F}_p is a root of $X^2 + X + 1$ if and only if it has order 3, and since

 $X^{6} - 1 = (X + 1)(X - 1)(X^{2} + X + 1)(X^{2} - X + 1)$, an element in \mathbb{F}_{p} is a root of $X^{2} - X + 1$ if and only if it has order 6.

The multiplicative group \mathbb{F}_p^{\times} of the field \mathbb{F}_p contains an element of order 4 (respectively 6) if and only if its order p-1 il a multiple of 4 (respectively 6). Notice that, since p-1 is even, 6 divides p-1 if and only if 3 divides p-1. Hence $X^2 + 1$ is reducible in $\mathbb{F}_p[X]$ for p congruent to 1 modulo 4 and irreducible for p congruent to -1 modulo 4, while $X^2 - X + 1$ is reducible in $\mathbb{F}_p[X]$ for p congruent to 1 modulo 3 and irreducible for p congruent to -1 modulo 3.

5. (a). The polynomial $X^4 + 1$ has no rational roots. There are several ways of checking that it is not the product of two quadratic polynomials with rational coefficients: we can split it over $\mathbb C$ and check that no product of two linear factors has rational coefficients. We can also write it as a product of two quadratic polynomials $X^2 + aX + b$ and $X^2 + cX + d$ and check that the solutions (a, b, c, d) are not rational numbers. Hence it is irreducible over \mathbb{Q} .

(b) The multiplicative group F_q^{\times} is cyclic of order q-1, it contains a subgroup of order 8 if and only if q is congruent to 1 modulo 8. Now a root of $X^4 + 1$ is a root of $X^8 - 1$ which is not a root of $X^4 - 1$, hence it is nothing else than an element of order 8 in the multiplicative group F_q^{\times} .

(c) The polynomial $X^4 + 1$ splits in $\mathbb{F}_2[X]$ as $(X + 1)^4$. Assume p is odd. Assume also that $X^4 + 1$ is irreducible over \mathbb{F}_p . Its stem field is an extension of \mathbb{F}_p of degree 4, hence has p^4 elements, it contains a field with p^2 elements (namely the roots of $X^{p^2} - X$) in which the polynomials $X^4 + 1$ has a root (because p^2 is congruent to 1 modulo 8). This is a contradiction. Hence $X^4 + 1$ is reducible over the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

6. Let $\sigma: F_1 \to F_2$ be a homomorphism of fields. The image of the prime field F of F_1 is the prime field of F_2 , the restriction of σ to F produces an isomorphism between these prime fields, hence they have the same number of elements.

If F is a finite field, from $\sigma(1) = 1$ one deduces by induction $\sigma(x) = x$ for any $x \in F$, hence σ is an Fhomomorphism.

If $F = \mathbb{Q}$, from $\sigma(1) = 1$ one deduces by induction $\sigma(a) = a$ for any $a \in \mathbb{Z}$. For $a/b \in \mathbb{Q}$ we have $b\sigma(a/b) = \sigma(a) = a$, hence $\sigma(a/b) = a/b$ for all $a/b \in F$, hence again σ is an F-homomorphism.

7. (a) When σ is an F-homomorphism $F(\alpha_1) \to F(\alpha_2)$, for $f \in F[X]$ we have $\sigma(f(\alpha)) = f(\sigma(\alpha))$. Hence if there exists an F-homomorphism $\sigma: F(\alpha_1) \to F(\alpha_2)$ such that $\sigma(\alpha_1) = \alpha_2$, for $f \in F[X]$ we have $f(\alpha_1) = 0$ if and only if $f(\alpha_2) = 0$ (recall that a homomorphism of fields is injective).

(b) If α_1 and α_2 are transcendental over F, then $F(\alpha_1)$ and $F(\alpha_2)$ isomorphic to the field of rational fractions F(X), there is a unique F-isomorphism $\sigma_1: F(X) \to F(\alpha_1)$ which maps X to α_1 and there is a unique F-isomorphism $\sigma_2: F(X) \to F(\alpha_2)$ which maps X to α_2 . Now the unique F-isomorphism $\sigma: F(\alpha_1) \to F(\alpha_2)$ which maps α_1 to α_2 is $\sigma_2 \circ \sigma_1^{-1}$.

(c) The proof of $(ii) \rightarrow (i)$ has been given in the answer to (a) above. Conversely, if α_1 and α_2 have the same irreducible polynomial f, then both $F(\alpha_1)$ and $F(\alpha_2)$ are F-isomorphic to F[X]/(f).

Assume that there exists an F-homomorphism $\sigma: F(\alpha_1) \to F(\alpha_2)$ such that $\sigma(\alpha_1) = \alpha_2$. For $P/Q \in F(X)$ with $Q(\alpha_1) \neq 0$, we have $Q(\alpha_2) = \sigma(Q(\alpha_1)) \neq 0$ and $\sigma(P(\alpha_1)/Q(\alpha_1)) = P(\alpha_2)/Q(\alpha_2)$, which proves the unicity of σ .

- 8. The field $F(\alpha,\beta)$ contains $F(\alpha)$ and $F(\beta)$, by the multiplicativity of the degrees the degree $[F(\alpha,\beta):F]$ is a multiple of $[F(\alpha):F]$ (which is n) and of $[F(\beta):F]$ (which is m); since n and m are relatively prime this degree is a multiple of mn. It follows that $F(\alpha,\beta)$ is an extension of $F(\alpha)$ of degree m, an extension of $F(\beta)$ of degree n and an extension of F of degree mn.

9. (a) For a polynomial $f(X_1, X_2) \in \mathbb{F}_2[X_1, X_2]$, we have $f(X_1, X_2)^2 = f(X_1^2, X_2^2)$. **(b)** Set $K = \mathbb{F}_2(T_1^2, T_2)$. Since T_1 does not belong to K but T_1^2 belongs to K, and since $K(T_1) = E$, we have [E:K] = 2. In the same way, T_2 does not belong to F but T_2^2 belongs to F; since $F(T_2) = K$, we have [K:F] = 2. By the multiplicativity of the degrees we deduce [E:F] = [E:K][K:F] = 4.

(c) Any element of F has degree 1 or 2 over F, while the extension has degree 4. Hence the extension is not simple.

http://www.rnta.eu/nap/nap-2017/