
Nepal Algebra Project 2017

Tribhuvan University

Module 1 — Problem Set 2 (MW)

Correction

1. Let G be a finite subgroup of the multiplicative group K× of a field K. If n is the order of G, then by Lagrange’s
theorem any element x of G satisfies xn = 1, hence the polynomial Xn − 1 has at least n roots in K, namely the
elements in G. Since K is a field, this polynomial, which has degree n, has not more than n roots in K. We deduce
that G is the set of roots of the polynomial Xn − 1 in K:

Xn − 1 =
∏
x∈G

(X − x).

There are several proofs of the fact that G is cyclic. One of them is given in Milne, exercise 1.3. Here is another
one which uses the fact that in a finite abelian group of exponent e, there is an element of order e; this result follows
from the structure theorem of finite abelian groups. Recall that the exponent of a finite multiplicative group G is the
lcm of the orders of the elements in G: it is the smallest integer e ≥ 1 such that xe = 1 for all x ∈ G.

By Lagrange’s theorem, the exponent e of G divides n. Any x in G is a root of the polynomial Xe − 1. Since G
has order n, we get n roots in the field K of this polynomial Xe − 1 of degree e ≤ n. Hence e = n. Since there exists
at least one element in G of order e, we deduce that G is cyclic.

2. By Lagrange’s Theorem, if there exists a subgroup of order m in a group of order n, then m divides n.
For the converse, we assume that G is cyclic, generated by x, and that m divides n. Let n = dm. The element

yd = xd of G has order m, hence the subgroup Hm generated by yd is a subgroup of G of order m. This subgroup is
cyclic.

For the unicity, we consider a subgroup H of G of order m. An element z of H can be written z = x` with ` ∈ Z;
since it belongs to H, it satisfies zm = 1, hence x`m = 1, and therefore n divides `m, which means that d divides `.
This proves that z belongs to Hm. Therefore H = Hm and the unique subgroup of G of order m is the set of z in G
satisfying zm = 1.

3. A field of zero characteristic contains Q, hence is infinite. Therefore a finite field F has a nonzero characteristic; since
a field is a domain, this characteristic is a prime number, and the prime field of F is Fp. As a vector space over Fp, F
has finite dimension, say r, hence F has pr elements. If E is a subfield of F , then E contains Fp; let s be the dimension
of E as a Fp vector space. From the multiplicativity of the degrees [F : E] · [E : Fp] = [F : Fp] with [E : Fp] = s and
[F : Fp] = r, it follows that s divides r and that the dimension of F as a E–vector space is [F : E] = r/s. The subfield
E with ps elements is the set of roots of the polynomial Xps −X.

4. The stem field is defined for irreducible polynomials only. The question should have be phrased:

Are the polynomials X2 + 1 and X2 −X + 1 irreducible
• over Q ?
• over Fp for p = 2, 3, 5, 7 ? For p any prime?

When the answer is yes, the degree of the stem field over the corresponding field is the degree of the polynomial,
namely 2.

Since the polynomials have degree 2 and no root in Q, they are irreducible over Q.
The polynomial x2 + 1 is a square in F2[X], namely (X + 1)2, while the polynomial X2−X + 1 (which is the same

as X2 −X + 1) has no root in F2, hence is irreducible in F2[X].
The polynomial X2 + 1 has no root in F3, hence is irreducible in F3[X], while X2 −X + 1 = (X + 1)2 in F3[X].
Assume now that p is a prime ≥ 5.
Since X4 − 1 = (X2 + 1)(X2 − 1), an element in Fp is a root of X2 + 1 if and only if it has order 4. Similarly,

since X3 − 1 = (X − 1)(X2 +X + 1), an element in Fp is a root of X2 +X + 1 if and only if it has order 3, and since
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X6 − 1 = (X + 1)(X − 1)(X2 + X + 1)(X2 −X + 1), an element in Fp is a root of X2 −X + 1 if and only if it has
order 6.

The multiplicative group F×p of the field Fp contains an element of order 4 (respectively 6) if and only if its order
p− 1 il a multiple of 4 (respectively 6). Notice that, since p− 1 is even, 6 divides p− 1 if and only if 3 divides p− 1.

Hence X2 + 1 is reducible in Fp[X] for p congruent to 1 modulo 4 and irreducible for p congruent to −1 modulo 4,
while X2−X + 1 is reducible in Fp[X] for p congruent to 1 modulo 3 and irreducible for p congruent to −1 modulo 3.

5. (a). The polynomial X4 + 1 has no rational roots. There are several ways of checking that it is not the product of
two quadratic polynomials with rational coefficients: we can split it over C and check that no product of two linear
factors has rational coefficients. We can also write it as a product of two quadratic polynomials X2 + aX + b and
X2 + cX + d and check that the solutions (a, b, c, d) are not rational numbers. Hence it is irreducible over Q.
(b) The multiplicative group F×q is cyclic of order q− 1, it contains a subgroup of order 8 if and only if q is congruent
to 1 modulo 8. Now a root of X4 + 1 is a root of X8 − 1 which is not a root of X4 − 1, hence it is nothing else than
an element of order 8 in the multiplicative group F×q .
(c) The polynomial X4 + 1 splits in F2[X] as (X + 1)4.

Assume p is odd. Assume also that X4 + 1 is irreducible over Fp. Its stem field is an extension of Fp of degree 4,

hence has p4 elements, it contains a field with p2 elements (namely the roots of Xp2 −X) in which the polynomials
X4 + 1 has a root (because p2 is congruent to 1 modulo 8). This is a contradiction. Hence X4 + 1 is reducible over
the finite field Fp = Z/pZ.

6. Let σ : F1 → F2 be a homomorphism of fields. The image of the prime field F of F1 is the prime field of F2,
the restriction of σ to F produces an isomorphism between these prime fields, hence they have the same number of
elements.

If F is a finite field, from σ(1) = 1 one deduces by induction σ(x) = x for any x ∈ F , hence σ is an F–
homomorphism.

If F = Q, from σ(1) = 1 one deduces by induction σ(a) = a for any a ∈ Z. For a/b ∈ Q we have bσ(a/b) = σ(a) = a,
hence σ(a/b) = a/b for all a/b ∈ F , hence again σ is an F–homomorphism.

7. (a) When σ is an F–homomorphism F (α1) → F (α2), for f ∈ F [X] we have σ
(
f(α)

)
= f(σ(α)). Hence if there

exists an F–homomorphism σ : F (α1)→ F (α2) such that σ(α1) = α2, for f ∈ F [X] we have f(α1) = 0 if and only if
f(α2) = 0 (recall that a homomorphism of fields is injective).
(b) If α1 and α2 are transcendental over F , then F (α1) and F (α2) isomorphic to the field of rational fractions F (X),
there is a unique F–isomorphism σ1 : F (X) → F (α1) which maps X to α1 and there is a unique F–isomorphism
σ2 : F (X)→ F (α2) which maps X to α2. Now the unique F–isomorphism σ : F (α1)→ F (α2) which maps α1 to α2

is σ2 ◦ σ−11 .
(c) The proof of (ii) → (i) has been given in the answer to (a) above. Conversely, if α1 and α2 have the same
irreducible polynomial f , then both F (α1) and F (α2) are F–isomorphic to F [X]/(f).

Assume that there exists an F–homomorphism σ : F (α1)→ F (α2) such that σ(α1) = α2. For P/Q ∈ F (X) with
Q(α1) 6= 0, we have Q(α2) = σ(Q(α1)) 6= 0 and σ(P (α1)/Q(α1)) = P (α2)/Q(α2), which proves the unicity of σ.

8. The field F (α, β) contains F (α) and F (β), by the multiplicativity of the degrees the degree [F (α, β) : F ] is a multiple
of [F (α) : F ] (which is n) and of [F (β) : F ] (which is m); since n and m are relatively prime this degree is a multiple
of mn. It follows that F (α, β) is an extension of F (α) of degree m, an extension of F (β) of degree n and an extension
of F of degree mn.

9. (a) For a polynomial f(X1, X2) ∈ F2[X1, X2], we have f(X1, X2)2 = f(X2
1 , X

2
2 ).

(b) Set K = F2(T 2
1 , T2). Since T1 does not belong to K but T 2

1 belongs to K, and since K(T1) = E, we have
[E : K] = 2. In the same way, T2 does not belong to F but T 2

2 belongs to F ; since F (T2) = K, we have [K : F ] = 2.
By the multiplicativity of the degrees we deduce [E : F ] = [E : K][K : F ] = 4.
(c) Any element of F has degree 1 or 2 over F , while the extension has degree 4. Hence the extension is not simple.
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