1. Prove that a finite subgroup of the multiplicative group of a field is cyclic.
 Hint: this is Milne exercise 1.3.

2. Let G be a cyclic group of order n and let m a positive integer. Prove that there exists a subgroup of G of order m if and only if m divides n. Prove also that in this case, this subgroup of order m is unique and is cyclic.

3. Let F be a finite field. Prove that its characteristic p is a prime number, that the number of elements of F is p^r with some integer $r \geq 1$, and that any subfield of F has a number of elements of the form p^s where s divides r. Prove also that, conversely, for any divisor s of r there is a unique subfield of F with p^s elements.

4. What is the degree of the stem field of the polynomials $X^2 + 1$ and $X^2 - X + 1$?
 - over \mathbb{Q}?
 - over \mathbb{F}_p for $p = 2, 3, 5, 7$? For p any prime?
 Hint: for which value of p does the multiplicative group \mathbb{F}_p^\times contain a subgroup of order 4? of order 6?

5. (a) Prove that the polynomial $X^4 + 1$ is irreducible over \mathbb{Q}.
 (b) Let F_q be a finite field with q elements. Prove that $X^4 + 1$ splits in F_q into linear factors if and only if q is congruent to 1 modulo 8.
 Hint: $X^4 - 1 = (X^2 + 1)(X^2 - 1)$.
 (c) Check that for any prime p, the polynomial $X^4 + 1$ is reducible over the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
 Hint: for any odd integer a, the number a^4 is congruent to 1 modulo 8.

6. Let $\sigma : F_1 \rightarrow F_2$ be a homomorphism of fields. Show that the two fields F_1 and F_2 have the same characteristic, hence the same prime field F. Show that σ is a F-homomorphism.

7. Let E be a field, F a subfield of E, α_1 and α_2 two elements in E.
 (a) Assume that there exists a F–homomorphism $\sigma : F(\alpha_1) \rightarrow F(\alpha_2)$ such that $\sigma(\alpha_1) = \alpha_2$. Prove that α_1 is algebraic over F if and only if α_2 is algebraic over F.
 (b) Assume α_1 and α_2 are transcendental over F. Prove that there exists a unique F–homomorphism $\sigma : F(\alpha_1) \rightarrow F(\alpha_2)$ such that $\sigma(\alpha_1) = \alpha_2$ and that σ is an isomorphism.
 (c) Assume α_1 and α_2 are algebraic over F. Prove that the following conditions are equivalent.
 (i) α_1 and α_2 have the same irreducible polynomial over F.
 (ii) There exists a F–homomorphism $\sigma : F(\alpha_1) \rightarrow F(\alpha_2)$ such that $\sigma(\alpha_1) = \alpha_2$.
 If σ exists, then it is unique and is an isomorphism.

8. Let E be a field, F a subfield of E, α and β two elements in E algebraic over F of degrees m and n respectively. Assume $\gcd(m, n) = 1$. Prove that the field $F(\alpha, \beta)$ is a finite extension of F of degree mn.

9. Let $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ be the finite field with 2 elements, $E = \mathbb{F}_2(T_1, T_2)$ the field of rational fractions in two variables over \mathbb{F}_2, F the subfield $\mathbb{F}_2(T_1^2, T_2^2)$.
 (a) Check that any $\gamma \in E$ satisfies $\gamma^2 \in F$.
 (b) Show that E/F is a finite extension and compute $[E : F]$.
 Hint. Compute $[E : \mathbb{F}_2(T_1^2, T_2)]$ and $[\mathbb{F}_2(T_1^2, T_2) : F]$.
 (c) Deduce that the finite extension E/F is not simple.