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Module 1 — Problem Set 1 (MW)

Correction

1. If a = de and b = df then c = d(e+ f).
If a = de and c = df then b = d(f − e).
If b = de and c = df then a = d(f − e).

2. Let R be a finite integral domain. Let x ∈ R, x 6= 0. Since x is not a zero divisor in R, the map y 7→ xy from R to R
is injective. Since R is finite, this map is also surjective: there exists x′ ∈ R with xx′ = 1. Hence x is a unit and R is
a field.

3. The Euclidean algorithm produces

A = BQ0 +R0 with Q0 = X,R0 = X3 + 2X X5 + 4X3 + 3X = (X4 + 3X2 + 1)X +X3 + 2X
B = R0Q1 +R1 with Q1 = X,R1 = X2 + 1 X4 + 3X2 + 1 = (X3 + 2X)X +X2 + 1
R0 = R1Q2 +R2 with Q2 = X,R2 = X X3 + 2X = (X2 + 1)X +X
R1 = R2Q3 +R3 with Q3 = X,R3 = 1 X2 + 1 = X ·X + 1
R2 = R3Q4 with Q4 = X.

Hence the answer is D = 1
A solution (U0, V0) to Bézout’s relation AU0 +BV0 = 1 is U0 = −(X3 + 2X), V0 = B:

−(X3 + 2X)A+B2 = 1.

All other solutions are of the form U = U0 +WB, V = V0 −WA with W ∈ Q[X].

4. The roots of the quadratic polynomial T 2− 2T + 9 are 1 + 2i
√

2 and 1− 2i
√

2. From (i+
√

2)2 = 1 + 2i
√

2 we deduce

X4 − 2X2 + 9 = (X − i−
√

2)(X − i+
√

2)(X + i−
√

2)(X + i+
√

2).

This is the decomposition into irreducible factors over C, while the decomposition into irreducible factors over R is

X4 − 2X2 + 9 = (X2 − 2
√

2X + 3)(X2 + 2
√

2X + 3).

The polynomial X4 − 2X2 + 9 has no root in Q, one checks that it is not the product of two quadratic polynomials
with coefficients in Q, hence it is irreducible over Q.

5. (a) The image of ψ is a subring of S containing R, α1, . . . , αn, and any subring of S containing R, α1, . . . , αn should
contain the image of ψ. See Milne Lemma 1.21.
(b) See Milne p. 15.

6. The implications
(ii)⇒ (iii)⇒ (vi)⇒ (i)⇒ (v)⇒ (iv)⇒ (i)

are easy. One proof of (i)⇒ (ii) is to remark that since the ring of polynomials K[X] is Euclidean, the prime ideals
are maximal, hence the quotient of K[X] by the ideal generated by the irreducible polynomial of α over K is a field.
For another proof, see Milne 1.25.

7. The ring E is the set of elements of the form a+ bi+ c
√

2 + di
√

2 with a, b, c, d in Q. This is an integral domain and
also vector space of dimension 4 over Q. Hence it is a field (Milne Lemma 1.23). There are infinitely many choices of
α with E = Q(α). One of them is α = i+

√
2 (see exercise 4 above).
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8. (a) Let Fp be the prime field of F . It is a field with p elements, isomorphic to Z/pZ. The multiplicative group F×p
of nonzero elements in Fp has order p − 1. Hence xp−1 = 1 for all x ∈ F×p , and therefore xp = x for all x ∈ Fp. The
polynomial Xp −X has degree p, it cannot have more than p roots in a field. Hence the p roots of this polynomial
are the elements of Fp.
(b) Let E be the set of roots of Xq − X in F . Using the Frobenius endomorphism x 7→ xp iterated r times, one
deduces that E is an additive subgroup of F . Clearly the product of two elements in E is in E. Hence E is a field.
Let s be the dimension of E as a Fp–vector space. Then E has ps elements, and ps ≤ q because Xq −X has not more
than q roots in F .
In the case where F has 4 elements, the roots of X8 −X in F are the 2 elements of the prime field F2, hence s = 1.
Remark. As a matter of fact, s divides r. We can prove it using the fact that the multiplicative group E× of the
non zero elements in E is cyclic (Milne exercise 1.3): there is an element in E of order ps − 1. This element satisfies
xq−1 = 1, hence ps − 1 divides pr − 1. This implies that s divides r (if t is the remainder of the Euclidean division of
r by s, then pt − 1 is the remainder of the Euclidean division of pr − 1 by ps − 1).

Reference: J.S. Milne, Fields and Galois Theory Version 4.52 March 17, 2017.
http://www.jmilne.org/math/CourseNotes/FT.pdf
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