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Module 1 — Problem Set 1 (MW)

Correction

. If a = de and b = df then ¢ = d(e + f).
If a = de and ¢ = df then b=d(f —e).
If b = de and ¢ = df then a = d(f — e).

. Let R be a finite integral domain. Let z € R, = # 0. Since x is not a zero divisor in R, the map y — xy from R to R
is injective. Since R is finite, this map is also surjective: there exists 2’ € R with xza’ = 1. Hence z is a unit and R is

a field.

. The Euclidean algorithm produces

A=DBQo+ Ry with Qo= X,Ry=X%+2X X5 4+4X3 +3X = (X4 4+3X2+1)X + X% +2X
B=RyQ:+ R with Qi =X,R =X?+1 X443X2+1=(X3+2X)X + X2 +1
R():R1Q2+R2 with QQZX,RQZX X3+2X:(X2+1)X+X

Ry =RxQ3+ Ry with Q3=X,R3=1 XZ241=X-X+1

Ry = R3Q4 with Q4 = X.

Hence the answer is D =1
A solution (Uy, Vp) to Bézout’s relation AUy + BVy = 1is Uy = —(X? +2X), V, = B:

—(X3+2X)A+B?>=1.
All other solutions are of the form U = Uy + WB, V =V, — WA with W € Q[X].
. The roots of the quadratic polynomial T2 9T 49 are 1+ 2iv/2 and 1 — 2iv/2. From (i+ \@)2 =1+ 2iv/2 we deduce
X' —2X249= (X —i—V2)(X —i+V2)(X +i—V2)(X +i+V2).
This is the decomposition into irreducible factors over C, while the decomposition into irreducible factors over R is
Xt —2X? +9=(X%-2V2X +3)(X% +2V2X +3).

The polynomial X% — 2X? + 9 has no root in Q, one checks that it is not the product of two quadratic polynomials
with coefficients in @Q, hence it is irreducible over Q.

. (a) The image of ¢ is a subring of S containing R, a1, ..., a,, and any subring of S containing R, aq,...,a, should
contain the image of 1. See Milne Lemma 1.21.
(b) See Milne p. 15.

. The implications
(1) = (1i1) = (vi) = (i) = (v) = (iv) = (4)

are easy. One proof of (i) = (4¢) is to remark that since the ring of polynomials K[X] is Euclidean, the prime ideals
are maximal, hence the quotient of K[X] by the ideal generated by the irreducible polynomial of & over K is a field.
For another proof, see Milne 1.25.

. The ring E is the set of elements of the form a + bi 4+ ¢v/2 + diy/2 with a, b, ¢, d in Q. This is an integral domain and
also vector space of dimension 4 over Q. Hence it is a field (Milne Lemma 1.23). There are infinitely many choices of
a with E = Q(«). One of them is o = i 4+ /2 (see exercise 4 above).



8. (a) Let [, be the prime field of F. It is a field with p elements, isomorphic to Z/pZ. The multiplicative group F
of nonzero elements in Fj, has order p — 1. Hence 2P~! =1 for all € F)’, and therefore 27 = x for all € F,. The
polynomial X? — X has degree p, it cannot have more than p roots in a field. Hence the p roots of this polynomial
are the elements of IF,,.

(b) Let E be the set of roots of X9 — X in F. Using the Frobenius endomorphism x — zP iterated r times, one
deduces that E is an additive subgroup of F. Clearly the product of two elements in F is in E. Hence F is a field.
Let s be the dimension of E as a F,~vector space. Then E has p® elements, and p® < g because X? — X has not more
than ¢ roots in F.

In the case where F has 4 elements, the roots of X8 — X in F are the 2 elements of the prime field Fy, hence s = 1.
Remark. As a matter of fact, s divides r. We can prove it using the fact that the multiplicative group E* of the
non zero elements in E is cyclic (Milne exercise 1.3): there is an element in E of order p® — 1. This element satisfies
2971 = 1, hence p® — 1 divides p” — 1. This implies that s divides r (if ¢ is the remainder of the Euclidean division of
r by s, then p' — 1 is the remainder of the Euclidean division of p” — 1 by p® — 1).
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