1. If $a = de$ and $b = df$ then $c = d(e + f)$. If $a = de$ and $c = df$ then $b = d(f - e)$. If $b = de$ and $c = df$ then $a = d(f - e)$.

2. Let R be a finite integral domain. Let $x \in R$, $x \neq 0$. Since x is not a zero divisor in R, the map $y \mapsto xy$ from R to R is injective. Since R is finite, this map is also surjective: there exists $x' \in R$ with $xx' = 1$. Hence x is a unit and R is a field.

3. The Euclidean algorithm produces

\[A = BQ_0 + R_0 \quad \text{with} \quad Q_0 = X, R_0 = X^3 + 2X \]
\[B = R_0Q_1 + R_1 \quad \text{with} \quad Q_1 = X, R_1 = X^2 + 1 \]
\[R_0 = R_1Q_2 + R_2 \quad \text{with} \quad Q_2 = X, R_2 = X \]
\[R_1 = R_2Q_3 + R_3 \quad \text{with} \quad Q_3 = X, R_3 = 1 \]
\[R_2 = R_3Q_4 \quad \text{with} \quad Q_4 = X. \]

Hence the answer is $D = 1$

A solution (U_0, V_0) to Bézout’s relation $AU_0 + BV_0 = 1$ is

\[U_0 = -(X^3 + 2X), \quad V_0 = B:\]
\[-(X^3 + 2X)A + B^2 = 1. \]

All other solutions are of the form $U = U_0 + WB$, $V = V_0 - WA$ with $W \in \mathbb{Q}[X]$.

4. The roots of the quadratic polynomial $T^2 - 2T + 9$ are $1 + 2i\sqrt{2}$ and $1 - 2i\sqrt{2}$. From $(i + \sqrt{2})^2 = 1 + 2i\sqrt{2}$ we deduce

\[X^4 - 2X^2 + 9 = (X - i - \sqrt{2})(X - i + \sqrt{2})(X + i - \sqrt{2})(X + i + \sqrt{2}). \]

This is the decomposition into irreducible factors over \mathbb{C}, while the decomposition into irreducible factors over \mathbb{R} is

\[X^4 - 2X^2 + 9 = (X^2 - 2\sqrt{2}X + 3)(X^2 + 2\sqrt{2}X + 3). \]

The polynomial $X^4 - 2X^2 + 9$ has no root in \mathbb{Q}, one checks that it is not the product of two quadratic polynomials with coefficients in \mathbb{Q}, hence it is irreducible over \mathbb{Q}.

5. (a) The image of ψ is a subring of S containing R, $\alpha_1, \ldots, \alpha_n$, and any subring of S containing R, $\alpha_1, \ldots, \alpha_n$ should contain the image of ψ. See Milne Lemma 1.21.

(b) See Milne p. 15.

6. The implications

\[(ii) \Rightarrow (iii) \Rightarrow (vi) \Rightarrow (i) \Rightarrow (v) \Rightarrow (iv) \Rightarrow (i)\]

are easy. One proof of $(i) \Rightarrow (ii)$ is to remark that since the ring of polynomials $K[X]$ is Euclidean, the prime ideals are maximal, hence the quotient of $K[X]$ by the ideal generated by the irreducible polynomial of α over K is a field. For another proof, see Milne 1.25.

7. The ring E is the set of elements of the form $a + bi + c\sqrt{2} + di\sqrt{2}$ with a, b, c, d in \mathbb{Q}. This is an integral domain and also vector space of dimension 4 over \mathbb{Q}. Hence it is a field (Milne Lemma 1.23). There are infinitely many choices of α with $E = \mathbb{Q}(\alpha)$. One of them is $\alpha = i + \sqrt{2}$ (see exercise 4 above).
8. (a) Let \mathbb{F}_p be the prime field of F. It is a field with p elements, isomorphic to $\mathbb{Z}/p\mathbb{Z}$. The multiplicative group \mathbb{F}_p^\times of nonzero elements in \mathbb{F}_p has order $p - 1$. Hence $x^{p-1} = 1$ for all $x \in \mathbb{F}_p^\times$, and therefore $x^p = x$ for all $x \in \mathbb{F}_p$. The polynomial $X^p - X$ has degree p, it cannot have more than p roots in a field. Hence the p roots of this polynomial are the elements of \mathbb{F}_p.

(b) Let E be the set of roots of $X^q - X$ in F. Using the Frobenius endomorphism $x \mapsto x^p$ iterated r times, one deduces that E is an additive subgroup of F. Clearly the product of two elements in E is in E. Hence E is a field. Let s be the dimension of E as a \mathbb{F}_p-vector space. Then E has p^s elements, and $p^s \leq q$ because $X^q - X$ has not more than q roots in F.

In the case where F has 4 elements, the roots of $X^8 - X$ in F are the 2 elements of the prime field \mathbb{F}_2, hence $s = 1$.

Remark. As a matter of fact, s divides r. We can prove it using the fact that the multiplicative group E^\times of the non zero elements in E is cyclic (Milne exercise 1.3): there is an element in E of order $p^s - 1$. This element satisfies $x^{q-1} = 1$, hence $p^s - 1$ divides $p^r - 1$. This implies that s divides r (if t is the remainder of the Euclidean division of r by s, then $p^t - 1$ is the remainder of the Euclidean division of $p^r - 1$ by $p^s - 1$).

http://www.jmilne.org/math/CourseNotes/FT.pdf