Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University, Kirtipur, Kathmandu, Nepal Fields and Galois Theory- Short Note of Module 4 - Lecture 6 Course Instructor: René Schoof and Laura Geatti

NAP: Module -4, Lecture -6, 16:30 – 18:45, Thursday, July 13, 2017

The Galois group of a polynomial

- Construction of an irreducible polynomial of degree p, with Galois group $G_f = S_p$, for every prime p.
- A method to compute Galois groups $Gal(\mathbf{K}_f/\mathbf{Q})$. By reducing f modulo various primes p, one computes automorphisms σ_p in the Galois group $G_f \subset S_n$ up to conjugacy in G_f . The cycle decomposition of σ_p is determined by the factorization of the polynomial f modulo p. This method can be used to show that the Galois group G_f is "large". To show that it is "small", other method are needed (see Milne, p.55). The method was illustrated by a computer presentation using **PARI/GP**.

Excercises.

- 1. Let **K** be a field of $char \neq 2$. If $u, v \in \mathbf{K}^*$, then $\mathbf{K}(\sqrt{u}) = \mathbf{K}(\sqrt{v})$ if and only if u/v is a square in \mathbf{K}^* .
- 2. Compute the Galois group of \mathbf{Q}_f , where $f(x) = X^4 + 5x + 5$ (irreducible over \mathbf{Q}).
- 3. Fix $\alpha = \sqrt{2 \sqrt{3}}$.
 - (a) Show that $\mathbf{Q}(\alpha)$ is a normal extension of \mathbf{Q} .
 - (b) Compute its Galois group.
- 4. Let f be the polynomial $x^4 2$. Compute the Galois group of \mathbf{K}_f , when $\mathbf{K} = \mathbf{Q}, \mathbf{R}, \mathbf{C}, \mathbf{Q}(\sqrt{2}), \mathbf{Q}(\sqrt{2})$.