Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University, Kirtipur, Kathmandu,Nepal Fields and Galois Theory- Short Note of Module 4 - Lecture 5 Course Instructor: René Schoof and Laura Geatti

NAP: Module -4, Lecture -5, 16:30 – 18:45, Tuesday, July 11, 2017

The Galois group of a polynomial

 $f \in \mathbf{K}[x]$, separable monic polynomial of *degree 4*; g the cubic resolvent of f. f separable $\Rightarrow g$ separable; disc(f) = disc(g).

Proposition. $\mathbf{K}[\alpha, \beta, \gamma]$ is the fixed field of $G_f \cap V_4$.

Classification of the Galois groups of irreducible separable monic polynomials of *degree* 4, by means of the cubic resolvent:

- 1. g irred., disc(g) not square, $G_g = S_3$, then $G_f = S_4$;
- 2. g irred., disc(g) square, $G_g = A_3$, then $G_f = A_4$;
- 3. $g = h_1 \cdot h_2$, with $deg(h_i) = i$, disc(g) not square, $G_g = C_2$, then $G_f = D_4 \Leftrightarrow f$ irred. in \mathbf{K}_g ;
- 4. $g = h_1 \cdot h_2$, with $deg(h_i) = i$, disc(g) not square, $G_g = C_2$, then $G_f = C_4 \Leftrightarrow f$ red. in \mathbf{K}_g ;
- 5. g completely red., disc(g) not square, $G_g = id$, then $G_f = V_4$.

Construction of an irreducible polynomial of degree p, with Galois group $G_f = S_p$, for every prime p.

Lemma. Let H be a subgroup of S_p . If H contains a 2-cycle and a p-cycle, then $H = S_p$.

We will construct a polynomial $f \in \mathbf{Q}[x]$, irreducible of degree p, with p-2 real roots and 2 complex conjugate roots.

Excercises. Computation of the Galois group of the following irreducible polynomials of degree 4:

1. $x^4 - x - 1$ (type S_4); 2. $x^4 + 2x + 2$ (type S_4); 3. $x^4 + 8x + 12$ (type A_4); 4. $x^4 + 36x + 63$ (type V_4); 5. $x^4 - 10x^2 + 5$ (type C_4); 6. $x^4 + 3x + 3$ (type D_4);