NAProject 2017. Module 4.  Solutions of the excercises done in class in Lecture 3.

These excercises are taken from the file Excercises 1.

Let T'r and N denote the trace and norm maps from F,m to F,.
By definition Tr(z) = Y7 " ¢*(x) and N(z) =[] ¢'(z), where ¢ : Fym — Fym denotes the
Frobenius automorphism.

8. (a) Show that for every a € Fpm we have Tr(a) = a+aP+..4+a?" " and N(a) = a*tPH-+p"""
(b) Show that the trace is a surjective homomorphism of additive groups. (Hint: estimate the
size of the kernel).
(c) Show that the Norm map is a surjective homomorphism of multiplicative groups Fy. to
F;. (Hint: estimate the size of the kernel).

Sol.: (a) The Frobenius automorphism of F,m is given by ¢(a) = a? and its i iterate is given

by ¢*(a) = a?'. Now the formulas for Tr and N are immediate. Recall that ¢ generates the
automorphism group of Fy,m, which is cyclic of order m. Hence ¢ = Id. From this it follows that
indeed T'r and N take value in F, as Tr(a) and N(a) are fixed by ¢ for all a € F,m

(b) It is easy to check that Tr: F,m — F,, is a linear map of F,-vector spaces. If Tr(a) = 0, then a
lies in the set of zeros of a polynomial of degree p™~! in F,[x]. Such a set has cardinality at most
p™ 1. Hence Fpm /ker(Tr) has cardinality at least p™/p™~! = p = #F,, and T'r is surjective.

(c) It is easy to check that N:F.,. — F; is a homomorphism of multiplicative groups Write
in F)[z].

N(a)=a R Ui N( ) =1, thena hes in the set of zeros of a polynomial of degree 1 T

. Hence F}.. /ker(N) has cardinality at least

(p™ —1)/ (11__p:> —p— 1= #F;

and N is surjective.

Remark. Note that if Fyn & Fy[z]/(f), with f(z) = 2" + ap—12" "' + ... + a1z + ap irreducible
etc...and o € Zero(f), then Tr(a) = —ap—1 and N(«a) = (—1)"ap.

6. Let p and r be distinct primes. Show that p is a primitive root modulo r < ®,.(x) = L=
irreducible in F,[X].

Sol.: Since p and r are distinct primes, we can apply [MILNE], Lemma 5.9, p.63:
®, is irreducible in F[z] if and only if for any root ¢ of ®, the degree [F,[C] : Fp] = o(r) =r — 1.
This means that 7 — 1 is the smallest positive integer d for which ¢ lies in F 4 or, equivalently, the

smallest positive integer d for which ( satisfies de*:l = 1. Since in addition ¢ is primitive 7** root

of unity (it satisfies (" = 1 and has order r), it follows that de_l = 1if and only if r | p? — 1 if
and only if p? = 1 mod 7. In conclusion r — 1 the smallest integer d for which p¢ = 1 mod r. This
means that p is a primitive root modulo 7.

7. (a) Factor 27 — 1 and x'* — 1 in Fa[z].
(b) Factor ¢ — 1 and 26 — z in Fylx].

Sol.: (a) Write

x’—1

2’ —1=(z—1) =(x—-D)E+.. . +z+1).

r—1



Since 2 has order 3 in Z%, by the previous excercise, we know that % is not irreducible. Now
write

=z -1 =2@@—-1)+.. . +z+1).

Recall that Fys is the splitting field of 2® — x, that Fys is a degree three extension of Fy, that it
contains no proper subfields other than Fa, and that for every a € Fas \ Fa, the subfield Faa]
is equal to Fgs itself. Consequently 2% + ... + 2 + 1 is the product of all irreducible degree 3
polynomials in Fs[z], namely z® + 2% + 1 and 23 + = + 1. In conclusion, in Fa[z]

2’ —1=(z—1)(@*+ 2?2+ 1) (2> +z+1).

We can reason in a similar way for z'! — 1:

-1
1= (x—-1) 1 =(z -1 4. .+ +1).
l’_

zt—1
r—1

This time 2 is a primitive root in Zj,, hence is irreducible in Fs[z] and the above is the

complete factorization of z1* — 1 in Fa[x].

(b) Over Fy, we have
x16—1:x24—1:(:v—1)24.

Recall that 2'6 — x has Fyg as its splitting field: the elements of F g are precisely the zeros of the
polynomial 216 — .

The field Fi6 contains F3, and a field of 4 elements (which is isomorphic to F4). For every
a € Fig\ Fy, the subfield Fo[a] is equal to Fyg itself. Therefore the polynomial 2¢ — x factors into
the product of all irreducible polynomials of degree 1, of degree 2, and of degree 4 in F5. Hence

2 —r=xx -2+ D)@+ 22+ e+ Dt o+ 1)@ + 23+ 1).



