Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University,Kirtipur, Kathmandu,Nepal Fields and Galois Theory- Short Note of Module 4 - Lecture 2 Course Instructor: René Schoof and Laura Geatti

NAP: Module -4, Lecture -2, 16:30 – 18:45, Tuesday, July 4, 2017

Subfields.

Finite fields

Lemma 1. Let p be a prime. Let $f \in \mathbf{F}_p[x]$ be an irreducible polynomial of degree n. Let α be a zero of f. Then

(a) $\alpha^{p^n} = \alpha;$

(b) n is the smallest positive integer for which (a) holds.

Proposition 2. Let $f \in \mathbf{F}_p[x]$ be an irreducible polynomial of degree n. Let α be a zero of f. Then

$$f(x) = (x - \alpha)(x - \alpha^p) \dots (x - \alpha^{p^{n-1}}).$$

Corollary 3. Every finite extension of a finite field is a Galois extension.

Theorem 4. $Aut(\mathbf{F}_{p^n})$ is a cyclic group isomorphic to $\mathbf{Z}/n\mathbf{Z}$, generated by the Frobenius automorphism ϕ .

Proposition 5.

- (a) If **K** is a subfield of \mathbf{F}_{p^n} , then the cardinality of **K** is equal to p^d , for some divisor d of n.
- (b) For every divisor d of n, there exists a unique subfield of cardinality p^d .

The Galois correspondence in the case of finite fields:

Fix p prime and the finite field \mathbf{F}_{p^n} .

 $Aut(\mathbf{F}_{p^n}) = \langle \phi \rangle = Gal(\mathbf{F}_{p^n}/\mathbf{F}_p) \cong \mathbf{Z}/n\mathbf{Z}.$

For every d divisor of n, there is a unique subfield $\mathbf{F}_{p^d} \subset \mathbf{F}_{p^n}$. For every d divisor of n, there is a unique subgroup G_d of $Gal(\mathbf{F}_{p^n}/\mathbf{F}_p)$ of index d, namely the subgroup generated by ϕ^d .

 $\begin{array}{ll} \text{One has} \quad \mathbf{F}_{p^d} = \{ x \in \mathbf{F}_{p^n} \mid g(x) = x, \forall g \in G_d \}. \\ \text{Conversely} \quad G_d = \{ g \in Gal(\mathbf{F}_{p^n}/\mathbf{F}_p) \mid g(x) = x, \ \forall x \in \mathbf{F}_{p^d} \}. \\ \textbf{Example: } \mathbf{F}_{3^4}. \end{array}$

Excercise 1.

- (a) Find an irreducible polynomial f of degree 2 in $\mathbf{F}_3[x]$. Then $\mathbf{F}_9 = \mathbf{F}_3[x]/(f)$.
- (b) Which elements of \mathbf{F}_9 are generators of its multiplicative group \mathbf{F}_9^* ?
- (c) Which elements of \mathbf{F}_9 have square roots in \mathbf{F}_9 ?
- (d) Prove that the product of all elements of \mathbf{F}_9^* is 2.
- (e) Show that the additive group of \mathbf{F}_9 is not cyclic.

Excercise 2.

Draw the Hasse diagrams of the subfields of each \mathbf{F}_{2^k} for k = 1, ..., 6..