Excercise 1.(a) Find an irreducible polynomial f of degree 2 in $\mathbf{F}_3[x]$. Then $\mathbf{F}_9 = \mathbf{F}_3[x]/(f)$.

- (b) Which elements of \mathbf{F}_9 are generators of its multiplicative group \mathbf{F}_9^* ?
 - (c) Which elements of \mathbf{F}_9 have square roots in \mathbf{F}_9 ?
 - (d) Prove that the product of all elements of \mathbf{F}_9^* is 2.
 - (e) Show that the additive group of \mathbf{F}_9 is not cyclic.

Sol.: (a) The field \mathbf{F}_9 is a quadratic extension of \mathbf{F}_3 : we obtain it by adding a root ζ of a degree 2 irreducible monic polynomial in $\mathbf{F}_3[x]$. For example $x^2 + 1$, or $x^2 + x + 2$, or $x^2 + 2x + 2$.

Let's use x^2+2x+2 . Then $\mathbf{F}_9 \cong \mathbf{F}_3[x]/(x^2+2x+2)$. Using the isomorphism $\mathbf{F}_9 \cong \mathbf{F}_3[x]/(x^2+2x+2)$, we can represent the elements of \mathbf{F}_9 as polynomials of degree ≤ 2 with coefficients in \mathbf{F}_3 , where the product is computed modulo the relation $x^2 = -2x - 2 = x + 1$.

(b) \mathbf{F}_{9}^{*} is a cyclic group of 8 elements: 1, 2, x, 2x, 1 + x, 2 + x, 1 + 2x, 2 + 2x. It contains $\varphi(8) = 4$ generators, that is elements of order 8.

For example, let's check that x is a generator: the powers of x modulo $x^2 = x + 1$ exhaust all \mathbf{F}_9^* .

$$x, \quad x^2 = x + 1, \quad x^3 = x(x+1) = 2x + 1, \quad x^4 = x(2x+1) = 2,$$

$$x^{5} = 2x$$
, $x^{6} = 2x^{2} = 2x + 2$, $x^{7} = x(2x + 2) = x + 2$, $x^{8} = x(x + 2) = 1$

The other three generators of \mathbf{F}_9^* are x^k , with gcd(k, 8) = 1, namely

$$x^3 = 2x + 1$$
, $x^5 = 2x$, $x^7 = x + 2$.

(c) The elements of \mathbf{F}_9 which have a square root in \mathbf{F}_9 are precisely 0 and the squares in \mathbf{F}_9^* , in other words, the even powers of a generator:

$$x^{2} = x + 1, \quad x^{4} = 2, \quad x^{6} = 2x + 2, \quad x^{8} = 1.$$

(d) In \mathbf{F}_9^* every element z is paired with its inverse $z^{-1} \neq z$, except for 1 and the unique element of order 2 (there is one because the cardinality of \mathbf{F}_9^* is even!). As a result,

$$\prod_{z \in \mathbf{F}_9^*} z = 1 \cdot 2 = 2$$

(in general, for every prime p one has $\prod_{z \in \mathbf{F}_{*m}^*} z = 1 \cdot (-1) = -1$ (see Wilson's theorem))

(e) As an additive group, \mathbf{F}_9 is isomorphic to $\mathbf{Z}_3 \times \mathbf{Z}_3$, which is not cyclic: every element different from the neutral element in $\mathbf{Z}_3 \times \mathbf{Z}_3$ has order 3.

Excercise 2. Draw the Hasse diagrams of the subfields of each \mathbf{F}_{2^k} for k = 1, ..., 6...

Sol.: There is a field inclusion $\mathbf{F}_{2^h} \hookrightarrow \mathbf{F}_{2^k}$ if and only if $h \mid k$. k = 1:

$$\mathbf{F}_2$$

k = 2:

$$k=3$$
: $\mathbf{F}_2 \hookrightarrow \mathbf{F}_{2^3}$

$$k=4{:}$$

$$\mathbf{F}_2 \hookrightarrow \mathbf{F}_{2^2} \hookrightarrow \mathbf{F}_{2^4}$$

$$k=5$$
: $\mathbf{F}_2 \hookrightarrow \mathbf{F}_{2^5}$

k = 6:

