Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University,Kirtipur, Kathmandu,Nepal Fields and Galois Theory- Short Note of Module 2 - Lecture 1 Course Instructor: Roger and Sylvia Wiegand

NAP: Module -2, Lecture -1, 16:30 – 18:45, Tuesday, May 16, 2017

- We began by reviewing several of the most important basic things from Module 1, for example:
 - Minimum polynomial of an element of an extension field.
 - Degree of a field extension, multiplicativity of degrees along a tower of fields.
 - Construction of a field extension containing a root of a given polynomial of positive degree.
 - $-[F(\alpha):F] = \deg f$, where f is the min poly for α over F.
 - If α and β have same min poly over F, \exists ! F-iso $F(\alpha) \to F(\beta)$ taking α to β . Picture to illustrate.
- We defined what it means to say that a polynomial *splits in K*.
- We did some examples to motivate the notion of a splitting field:
 - Find min poly of $\sqrt{2+\sqrt{2}}$ over Q. (Splitting field has degree 4.)
 - Splitting field of $X^3 2$ over Q has degree 6. Picture to illustrate
- We defined splitting field K of f(X) over F and proved that $[K : F] \leq (\deg f)!$. The question arose as to whether the degree is always a *divisor* of d!. On the spot, we said that we did not know whether or not it is true in general, but that we would see later that that is true in characteristic 0 (using Galois Theory).