Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University,Kirtipur, Kathmandu,Nepal Fields and Galois Theory- Short Note of Lecture Module 1 - Lecture 1 Course Instructor: Prof. Michel Waldschmidt

Summary of NAP: Module -1, Lecture 5, Sunday May 7, 2017

- Factoring a polynomial over \mathbb{Q} .
- Gauss Lemma. Proof as follows:
 - Definition of primitive polynomials in $\mathbb{Z}[X]$: the gcd of the coefficients is 1.

— for any nonzero polynomial $g \in \mathbb{Q}[X]$, there is a unique positive rational number c(g) such that $g = c(g)g_1$ where $g_1 \in \mathbb{Z}[X]$ is primitive. If $g \in \mathbb{Z}[X]$, then c(g) (content of g) is the gcd of the coefficients of g.

— The product of two primitive polynomials in $\mathbb{Z}[X]$ is primitive: for p a prime number, use the canonical ring homomorphism $\varphi_p : \mathbb{Z}[X] \to \mathbb{Z}_p[X]$.

- Deduce c(fg) = c(f)c(g).
- Proof of Gauss Lemma.
- Eisenstein Criterion.
- Existence of transcendental numbers, gave the proof following Cantor of the existence of transcendental numbers but not the proof by Liouville.
- Algebraically closed fields. Algebraic closure of a field.