Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University,Kirtipur, Kathmandu,Nepal Fields and Galois Theory- Short Note of Lecture Module 1 - Lecture 1 Course Instructor: Prof. Michel Waldschmidt

Summary of NAP: Module -1, Lecture 1, Tuesday, May 2, 2017

- Introduction
- Starting from the set $\mathbb{N} = \{0, 1, 2, ...\}$ of natural numbers, construction of the ring \mathbb{Z} of rational integers, next of the field \mathbb{Q} of rational numbers (as a quotient), of the field \mathbb{R} of rational numbers (no detail), and then construction of \mathbb{C} as a quotient $\mathbb{R}[X]/(X^2 + 1)$.
- Complex conjugation.
- Rings, integral domains, group of units. Units of $\mathbb{R}[X]$ when \mathbb{R} is a domain.
- Definition of irreducible polynomials over a field.
- Property (without proof): \mathbb{C} is algebraically closed.
- Exercises:
 - Which are the irreducible polynomials over \mathbb{R} ?
 - The fields $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2})$