Nepal Algebra Project 2016 SOLUTIONS of the midterm exam

Tribhuvan University

June 25^{th} 2016

1. (a) Find the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over \mathbb{Q} , and *prove* that it is the minimal polynomial.

Answer. If we start from the formal identity $x = \sqrt{3} + \sqrt{5}$, we deduce that $(x - \sqrt{3})^2 = 5$. Hence $x^2 - 2 = 2\sqrt{3}x$. Finally $f(x) = (x^2 - 2)^2 - 12x^2 = x^4 - 16x^2 + 4 \in \mathbb{Q}[x]$ has $\sqrt{3} + \sqrt{5}$ as one of its root. We check that $\sqrt{5}$ is not in $\mathbb{Q}(\sqrt{3})$ as follows: if $\sqrt{5} = a + b\sqrt{3}$ with a and b in \mathbb{Q} , then $5 = a^2 + 3b^2 + 2ab\sqrt{3}$. Since $\sqrt{3}$ is irrational, this implies ab = 0 and $5 = a^2 + 3b^2$, which is not possible because 5 and 5/3 are irrational. To conclude that f(x) is the minimal polynomial, it is enough to observe (by next problem) that the degree of the minimal polynomial equals $[\mathbb{Q}(\sqrt{3} + \sqrt{5}) : \mathbb{Q}] = 4$ and since f(x) is divisible by the minimal polynomial, it can only coincide with it.

(b) Prove that $\mathbb{Q}(\sqrt{3} + \sqrt{5}) = \mathbb{Q}(\sqrt{3}, \sqrt{5}).$

(5 marks)

(5 marks)

Answer. It is plain that $\mathbb{Q}(\sqrt{3}+\sqrt{5}) \subseteq \mathbb{Q}(\sqrt{3},\sqrt{5})$. To verify the opposite inclusion, it is enough to observe that $\sqrt{3} = -\frac{7}{2}(\sqrt{3}+\sqrt{5}) + \frac{1}{4}(\sqrt{3}+\sqrt{5})^3$ and $\sqrt{5} = \frac{9}{2}(\sqrt{3}+\sqrt{5}) - \frac{1}{4}(\sqrt{3}+\sqrt{5})^3$.

2. Prove the theorem about transitivity of algebraic extensions: If $F \subseteq K \subseteq L$ are field extensions such that K is algebraic over F, and L is algebraic over K, then L is algebraic over F.

(10 marks)

Answer. The solution can be found on the textbook in page 19, Corollary 1.31(b).

3. Let F be a finite field with char(F) = p(> 0). Show that $F = \{\text{roots of the equation } X^{p^n} - X = 0\}$, where $n = [F : \mathbb{F}_p]$. (*Hint.* We can use the fact that the multiplicative group $F^* = F - \{0\}$ of F has order $p^n - 1$.)

(10 marks)

Answer. The field F contains \mathbb{F}_p and is finite. So we may put $n = [F : \mathbb{F}_p]$. Hence $\sharp(F) = p^n$. Therefore, F^* is a multiplicative group of order $p^n - 1$. So, for any $a \in F^*$, it holds $a^{p^n-1} - 1 = 0$. Setting $R = \{\text{roots of the equation } X^{p^n} - X = 0\}$, we know $a \in R$. By counting $0 \in F$, we have $F \subset R$. According to the argument (1.7), the algebraic equation over a field has no more roots than its degree. So, $\sharp R \leq p^n$. It shows F = R

4. Let F be a field of characteristic p(>0). Suppose $a \in F$ is not a p-th power in F (i.e. We don't have $a = \alpha^p$ for any $\alpha \in F$). Show that $f(X) = X^p - a$ is irreducible in F[X]. (This is the fact of Example 2.11 stated without proof.)

(10 marks)

Answer. Let us assume the contrary: that is $f(X) \in F[X]$ is reducible. Let us induce a contradiction. Now, we may set f(X) = g(X)h(X) in F[X] where $g(X) \in F[X]$ is irreducible and $\deg(g) < \deg(f)$. Let α be a root of g(X). It is a root of f(X) at the same time. So we have $\alpha^p = a$. Then it holds $f(X) = X^p - a = X^p - \alpha^p =$ $(X - \alpha)^p$. Because g(X)|f(X), we may put $g(X) = (X - \alpha)^r$ with $1 \le r < p$. We have $(X - \alpha)^r = X^r - r\alpha X^{p-1} + \cdots \in F[X]$.

It means $\alpha \in F$. It contradicts our starting hypothesis.

- 5. Let $\zeta = e^{2\pi i/5}$.
 - (a) Prove that $\mathbb{Q}[\zeta]$ is a Galois extension of \mathbb{Q} .

(2 marks)

Answer. The number ζ is a root of $f = X^4 + X^3 + X^2 + X + 1$, as are $\zeta^2, \zeta^3, \zeta^4$. Thus $\mathbb{Q}[\zeta]$ is a splitting field for f, and f is separable (since, for instance char(\mathbb{Q}) = 0), thus $\mathbb{Q}[\zeta]$ is a Galois extension of \mathbb{Q} .

(b) Calculate $[\mathbb{Q}[\zeta] : \mathbb{Q}]$.

(2 marks)

Answer. We claim that $[\mathbb{Q}[\zeta] : \mathbb{Q}] = 4$. To see this, we need to calculate the minimum polynomial of ζ which, since ζ is a root of $f = X^4 + X^3 + X^2 + X + 1$, is a factor of f. But f is irreducible (either use Eisenstein, or use lemma from lectures, or some other method). Thus f is the minimum polynomial for ζ , and since the degree of f is 4, we are done.

(c) What is the structure of the Galois group $\operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q})$?

(4 marks)

Answer. Write G for the group in question, and notice that the elements of G can be thought of as permutations of the set $\{\zeta, \zeta^2, \zeta^3, \zeta^4\}$, since these are the roots of f.

Furthermore, once we've specified the destination of the root ζ we have determined an automorphism of $\mathbb{Q}[\zeta]/\mathbb{Q}$, and so determined the element of the Galois group. There are four elements in this group (by the previous two parts and the FTGT), four possible destinations for ζ , hence they all occur. Write

 $\sigma_i: \zeta \mapsto \zeta^i$

for i = 1, ..., 4. Now observe that σ_3 has order 4 and we conclude that the group is cyclic, C_4 .

(d) Give an example of a field M such that $\mathbb{Q} \subset M \subset \mathbb{Q}[\zeta]$.

(2 marks)

(2 marks)

Answer. Let $M = \mathbb{Q}(\zeta + \zeta^4)$. This field is real, so is not $\mathbb{Q}[\zeta]$. On the other hand it is fixed by σ_4 , hence is not \mathbb{Q} .

6. (a) Prove that $X^n - 2$ is irreducible for all positive integers n.

Answer. This follows directly from Eisenstein's criterion.

(b) Let $\omega = \sqrt[n]{2}$ for some positive integer *n*. Calculate

 $[\mathbb{Q}[\omega]:\mathbb{Q}].$

(1 mark)

Answer. The previous question implies that $[\mathbb{Q}[\omega] : \mathbb{Q}] = n$.

(c) Prove that $\sqrt[n]{2}$ is a constructible number if and only if $n = 2^k$ for some positive integer k.

(7 marks)

Answer. From lectures we know that $\sqrt[n]{2}$ is constructible if and only if it lies in a tower of quadratic extensions.

In particular if $n \neq 2^k$, then the degree of $[\mathbb{Q}[\sqrt[n]{2}] : \mathbb{Q}]$ has an odd factor, and so (by multiplicativity of degrees), cannot be a subfield of a tower of quadratic extensions, hence $\sqrt[n]{2}$ is not constructible. On the other hand if $n = 2^k$. Then we have a tower of quadratic extensions:

$$\mathbb{Q} \subset \mathbb{Q}[\sqrt{2}] \subset \mathbb{Q}[\sqrt[4]{2}] \subset \cdots \subset \mathbb{Q}[\sqrt[n]{2}]$$

and we are done.