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1. (a) Find the minimal polynomial of
√

3 +
√

5 over Q, and prove that it is the minimal polynomial.

(5 marks)

Answer. If we start from the formal identity x =
√

3 +
√

5, we deduce that (x −
√

3)2 = 5. Hence
x2− 2 = 2

√
3x. Finally f(x) = (x2− 2)2− 12x2 = x4− 16x2 + 4 ∈ Q[x] has

√
3 +
√

5 as one of its root. We
check that

√
5 is not in Q(

√
3) as follows: if

√
5 = a+ b

√
3 with a and b in Q, then 5 = a2 + 3b2 + 2ab

√
3.

Since
√

3 is irrational, this implies ab = 0 and 5 = a2 + 3b2, which is not possible because 5 and 5/3 are
irrational. To conclude that f(x) is the minimal polynomial, it is enough to observe (by next problem) that
the degree of the minimal polynomial equals [Q(

√
3+
√

5) : Q] = 4 and since f(x) is divisible by the minimal
polynomial, it can only coincide with it.

(b) Prove that Q(
√

3 +
√

5) = Q(
√

3,
√

5).

(5 marks)

Answer. It is plain that Q(
√

3+
√

5) ⊆ Q(
√

3,
√

5). To verify the opposite inclusion, it is enough to observe
that

√
3 = − 7

2 (
√

3 +
√

5) + 1
4 (
√

3 +
√

5)3 and
√

5 = 9
2 (
√

3 +
√

5)− 1
4 (
√

3 +
√

5)3.

2. Prove the theorem about transitivity of algebraic extensions: If F ⊆ K ⊆ L are field extensions such that K is
algebraic over F , and L is algebraic over K, then L is algebraic over F .

(10 marks)

Answer. The solution can be found on the textbook in page 19, Corollary 1.31(b).

3. Let F be a finite field with char(F ) = p(> 0). Show that F = {roots of the equation Xpn − X = 0}, where
n = [F : Fp]. (Hint. We can use the fact that the multiplicative group F∗ = F − {0} of F has order pn − 1.)

(10 marks)

Answer. The field F contains Fp and is finite. So we may put n = [F : Fp]. Hence ](F ) = pn. Therefore,
F ∗ is a multiplicative group of order pn − 1. So, for any a ∈ F ∗, it holds ap

n−1 − 1 = 0. Setting R =
{roots of the equation Xpn − X = 0}, we know a ∈ R. By counting 0 ∈ F , we have F ⊂ R. According to the
argument (1.7), the algebraic equation over a field has no more roots than its degree. So, ]R ≤ pn. It shows
F = R

4. Let F be a field of characteristic p(> 0). Suppose a ∈ F is not a p-th power in F (i.e. We don’t have a = αp for
any α ∈ F ). Show that f(X) = Xp − a is irreducible in F [X]. (This is the fact of Example 2.11 stated without proof.)

(10 marks)

Answer. Let us assume the contrary: that is f(X) ∈ F [X] is reducible. Let us induce a contradiction. Now,
we may set f(X) = g(X)h(X) in F [X] where g(X) ∈ F [X] is irreducible and deg(g) < deg(f). Let α be a root
of g(X). It is a root of f(X) at the same time. So we have αp = a. Then it holds f(X) = Xp − a = Xp − αp =
(X − α)p. Because g(X)|f(X), we may put g(X) = (X − α)r with 1 ≤ r < p. We have

(X − α)r = Xr − rαXp−1 + · · · ∈ F [X].
It means α ∈ F . It contradicts our starting hypothesis.

5. Let ζ = e2πi/5.

(a) Prove that Q[ζ] is a Galois extension of Q.
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(2 marks)

Answer. The number ζ is a root of f = X4 +X3 +X2 +X + 1, as are ζ2, ζ3, ζ4. Thus Q[ζ] is a splitting
field for f , and f is separable (since, for instance char(Q) = 0), thus Q[ζ] is a Galois extension of Q.

(b) Calculate [Q[ζ] : Q].

(2 marks)

Answer. We claim that [Q[ζ] : Q] = 4. To see this, we need to calculate the minimum polynomial of ζ
which, since ζ is a root of f = X4 + X3 + X2 + X + 1, is a factor of f . But f is irreducible (either use
Eisenstein, or use lemma from lectures, or some other method). Thus f is the minimum polynomial for ζ,
and since the degree of f is 4, we are done.

(c) What is the structure of the Galois group Gal(Q[ζ]/Q)?

(4 marks)

Answer. Write G for the group in question, and notice that the elements of G can be thought of as
permutations of the set {ζ, ζ2, ζ3, ζ4}, since these are the roots of f .

Furthermore, once we’ve specified the destination of the root ζ we have determined an automorphism of
Q[ζ]/Q, and so determined the element of the Galois group. There are four elements in this group (by the
previous two parts and the FTGT), four possible destinations for ζ, hence they all occur. Write

σi : ζ 7→ ζi

for i = 1, . . . , 4. Now observe that σ3 has order 4 and we conclude that the group is cyclic, C4.

(d) Give an example of a field M such that Q ⊂M ⊂ Q[ζ].

(2 marks)

Answer. Let M = Q(ζ + ζ4). This field is real, so is not Q[ζ]. On the other hand it is fixed by σ4, hence
is not Q.

6. (a) Prove that Xn − 2 is irreducible for all positive integers n.

(2 marks)

Answer. This follows directly from Eisenstein’s criterion.

(b) Let ω = n
√

2 for some positive integer n. Calculate

[Q[ω] : Q].

(1 mark)

Answer. The previous question implies that [Q[ω] : Q] = n.

(c) Prove that n
√

2 is a constructible number if and only if n = 2k for some positive integer k.

(7 marks)

Answer. From lectures we know that n
√

2 is constructible if and only if it lies in a tower of quadratic
extensions.

In particular if n 6= 2k, then the degree of [Q[ n
√

2] : Q] has an odd factor, and so (by multiplicativity of
degrees), cannot be a subfield of a tower of quadratic extensions, hence n

√
2 is not constructible.

On the other hand if n = 2k. Then we have a tower of quadratic extensions:

Q ⊂ Q[
√

2] ⊂ Q[
4
√

2] ⊂ · · · ⊂ Q[
n
√

2]

and we are done.
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