Nepal Algebra Project 2016 Midterm exam

Tribhuvan University

June 25^{th} 2016

1. (a) Find the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over \mathbb{Q} , and *prove* that it is the minimal polynomial.

(5 marks)

- (b) Prove that $\mathbb{Q}(\sqrt{3} + \sqrt{5}) = \mathbb{Q}(\sqrt{3}, \sqrt{5}).$
- 2. Prove the theorem about transitivity of algebraic extensions: If $F \subseteq K \subseteq L$ are field extensions such that K is algebraic over F, and L is algebraic over K, then L is algebraic over F.

(10 marks)

- 3. Let F be a finite field with char(F) = p(> 0). Show that $F = \{\text{roots of the equation } X^{p^n} X = 0\}$, where $n = [F : \mathbb{F}_p]$. (*Hint.* We can use the fact that the multiplicative group $F^* = F \{0\}$ of F is a cyclic group. See Exrcise 1-3 (e))
 - (10 marks)
- 4. Let F be a field of characteristic p(>0). Suppose $a \in F$ is not a p-th power in F (i.e. We don't have $a = \alpha^p$ for any $\alpha \in F$). Show that $f(X) = X^p a$ is irreducible in F[X]. (This is the fact of Example 2.11 stated without proof.)

(10 marks)

(2 marks)

(2 marks)

(4 marks)

- 5. Let $\zeta = e^{2\pi i/5}$.
 - (a) Prove that $\mathbb{Q}[\zeta]$ is a Galois extension of \mathbb{Q} .
 - (b) Calculate $|\mathbb{Q}[\zeta] : \mathbb{Q}|$.
 - (c) What is the structure of the Galois group $\operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q})$?
 - (d) Give an example of a field M such that $\mathbb{Q} \subset M \subset \mathbb{Q}[\zeta]$.

(2 marks)

(2 marks)

- 6. (a) Prove that $X^n 2$ is irreducible for all positive integers n.
 - (b) Let $\omega = \sqrt[n]{2}$ for some positive integer *n*. Calculate

 $|\mathbb{Q}[\omega] : \mathbb{Q}|.$

(1 mark)

(c) Prove that $\sqrt[n]{2}$ is a constructible number if and only if $n = 2^k$ for some positive integer k.

(7 marks)

(5 marks)