Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University,Kirtipur, Kathmandu,Nepal Fields and Galois Theory

Course Instructor: Prof. Michel Waldschmidt

NAP: Module-4, Problem Set 2

1. Galois group of a family of cubic polynomials. For $a \in \mathbb{Z}$, consider the polynomial

$$f_a(X) = X^3 - aX^2 - (a+3)X - 1 \in \mathbb{Z}[X].$$

Further, define $\sigma : \mathbb{C} \setminus \{-1\} \to \mathbb{C} \setminus \{0\}$ by

$$\sigma: z\mapsto -\frac{1}{1+z}$$

(a) Is f is irreducible over \mathbb{Q} ?

- (b) Let α be a complex root of f_a . Check that $\sigma(\alpha)$ is also a root of f_a .
- (c) What is the Galois group of f_a over \mathbb{Q} ?
- (d) Is the discriminant of f_a a square in \mathbb{Q} ?
- 2. Galois group of a polynomial of degree 4. Let b be an integer. Define f(X) = X⁴ + bX² + 1 ∈ Z[X].
 (a) Let α be a root of f in C. Write the 4 roots α₁, α₂, α₃, α₄ of f in terms of α. Deduce

$$b = \alpha^2 + \frac{1}{\alpha^2} \cdot$$

(b) For which values of b is the polynomial f separable? For these values, what is the Galois group of f over \mathbb{Q} . Hint. One may consider 5 cases: • b = -2;

- b = 2;
- -b-2 is a nonzero square;
- b-2 is a nonzero square;
- \bullet otherwise.

http://www.rnta.eu/nap/index.php