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1. The symmetric group S4.
(a) Check that, among the 24 elements of the symetric group S4,

• 1 has order 1
• 9 have order 2
• 8 have order 3
• 6 have order 4

Hint: the partitions of 4 are (1)(1)(1)(1), (2)(1)(1), (2)(2), (3)(1), (4).

(b) Deduce that in S4 there are 30 subgroups:
• 1 with order 1
• 9 with order 2
• 4 with order 3
• 7 with order 4
• 4 with order 6
• 3 with order 8
• 1 with order 12
• 1 with order 24

(c) Check that there are 11 conjugacy classes and 4 normal subgroups.

Reference:

http://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4

2. The dihedral group Dn of order 2n.
(a) Let n ≥ 1. Consider the following two elements r and s in Sn:

r(i) = i+ 1 mod n, s(i) = n+ 2− i mod n (i = 1, 2, . . . , n).

Check that rn = 1, s2 = 1, rsrs = 1 and that the subgroup Dn of Sn generated by r and s has order 2n.
This is the dihedral group of index n, group of symmetries of the regular n–gone.
(b) Show that if n is odd, then D2n is isomorphic to the direct product C2 ×Dn.
(c) Give the list of groups of order 2p with p prime.
Hint. Use the fact that such a group contains an element of order p and an element of order 2.

3. A transitive subgroup of Sn containing a n− 1 cycle and a transposition is Sn.
(a) Let σ = (1, 2, · · · , n− 1) and τ = (1, n). Check

στσ−1 = (2, n).

(b) Check that Sn is generated by τ and σ.
(c) Let G be a transitive subgroup of Sn containing a n− 1 cycle and a transposition. Check G = Sn.

http://www.rnta.eu/nap/index.php
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Correction

1. The symmetric group S4.
(a)
• There is 1 element of order 1, namely I, corresponding to the partition (1)(1)(1)(1).
• There are 9 elements of order 2, among which 6 correspond to the partition (2)(1)(1), namely the transpositions

(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)

while the 3 others correspond to the partition (2)(2), namely the products of disjoint transpositions

(a, b)(c, d), (a, c)(b, d), (a, d)(b, c).

• There are 8 elements of order 3, belonging to 4 cyclic groups, they correspond to the partition (3)(1), they are the
cycles of length 3:

(a, b, c), (a, b, d), (a, c, b), (a, c, d), (a, d, b), (a, d, c), (b, c, d), (b, d, c).

• There are 6 elements of order 4, corresponding to the partition (4), they are the cycles of length 4:

(a, b, c, d), (a, b, d, c), (a, c, b, d), (a, c, d, b), (a, d, b, c), (a, d, c, b).

(b) As a consequence, there are
• 1 subgroup of order 1, and 1 conjugacy class;
• 9 subgroups of order 2, they are cyclic, and 1 conjugacy class;
• 4 subgroups of order 3, they are cyclic, and 1 conjugacy class;
• 7 subgroups of order 4, and 3 conjugacy classes. There are 3 cyclic subgroups of order 4, generated by a cycle of
length 4 (each of these 3 groups has 2 generators). Further, there is the normal subgroup of S4 which consists of the
elements of order 2 which are product of disjoint transpositions:

V4 = {I, (a, b)(c, d), (a, c)(b, d), (a, d)(b, c)}.

This is the abelian non cyclic Klein group of order 4. Furthermore, there are 3 non normal subgroups of order 4
isomorphic to V4, generated by two disjoint transpositions

{(a, b), (c, d), (a, b)(c, d)}, {(a, c), (b, d), (a, c)(b, d)}, {(a, d), (b, c), (a, d)(b, c)}.

• 4 subgroups of order 6, and 1 conjugacy class: they are the subgroups isomorphic to S3 which fix one of the 4
elements a, b, c, d and permute the 3 others.
• 3 subgroups of order 8, and 1 conjugacy class: they are isomorphic to the dihedral group D4 of order 8

< (a, b), (a, c, b, d) >, < (a, c), (a, b, c, d) >, < (a, d), (a, b, d, c) > .

• 1 subgroup of order 12 and index 2, kernel of the signature: this is the alternating group A4.
• 1 subgroup of order 24, namely S4.

(c) The 4 normal subgroups are {1}, V , A4 and S4.

Reference:

http://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4

2. The dihedral group Dn of order 2n.
(a) By induction, for k ∈ Z we have rk(i) = i+ k mod n, hence rk = 1 if and only if n divides k.

Also s2(i) = n+ 2− (n+ 2− i) = i mod n.
Further, rs(i) = r(s(i)) = n + 3 − i mod n and srs(i) = s(rs(i)) = n + 2 − (n + 3 − i) = −1 + i mod n, hence

rsrs(i) = r(srs(i)) = i mod n.
It follows that

Dn = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1} = {1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.

For instance D1 = S2 = C2, D2 = C2 × C2 (Klein group V4), D3 = S3.
(b) Assume n is odd. Let a and b be generators of D2n with a of order 2n and b of order 2 satisfying abab = 1. Since
n is odd, the cyclic subgroup of D2n of order 2n generated by a is the direct product of the cyclic group H of order 2
generated by an and the cyclic group generated by a2.

2

http://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4


Since a2b = ba−2, the subgroup K of D2n generated by a2 and b is isomorphic to Dn. We have

K = {1, a2, a4 . . . , a2n−2, b, ba2, ba4 . . . , ba2n−2}.

The elements ai and aib belong to K if i is even, while if i is odd they can be written anc with c ∈ K. Hence
HK = D2n. Since an does not belong to K, we have H ∩K = {1}. Finally, since an has order 2, we have anba−n = b,
and an commutes with the elements of K. This proves that D2n is the direct product of the two subgroups H, K,
hence is isomorphic to the direct product C2 ×Dn.
(c) Let G be a group of order 2p with p prime. Let us show that G is either the cyclic group of order 2p or else the
dihedral group Dp. This is true for p = 2, since G is either the cyclic group of order 4 or else the Klein group V4 which
is the dihedral group D2.

Assume p is odd. If G is commutative, it it the direct product of a group of order 2 and a group of order p, hence
it is cyclic.

Assume G is not commutative. It contains a subgroup of order 2, say H = {1, s}, and a subgroup of order p, say
K. The subgroup K of order p is normal, since its index is 2, and it is cyclic, any element of K other than 1 is a
generator of K. Let r be a generator of K. We have

G = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}.

Since K is normal in G, and since s−1 = s, there exists i ∈ {0, . . . , p− 1} such that srs = ri. The assumption that G
is not commutative implies i 6= 1. From s2 = 1 we deduce

r = s2rs2 = s(srs)s = sris = ri
2

,

which implies that i2 ≡ 1 mod p. In the finite field Fp the only solution 6= 1 to the equation x2 = 1 is x = −1. Hence
i = p− 1, srs = r−1 and D is the dihedral group Dp.

3. A transitive subgroup of Sn containing a n− 1 cycle and a transposition is Sn.
(a) Let σ = (1, 2, · · · , n− 1) and τ = (1, n). We have

σ−1(1) = n− 1, τ(n− 1) = n− 1, σ(n− 1) = 1, hence στσ−1(1) = 1.

For 3 ≤ i ≤ n− 1 we have 2 ≤ i− 1 ≤ n− 2), hence

σ−1(i) = i− 1, τ(i− 1) = i− 1, σ(i− 1) = i, hence στσ−1(i) = i.

Also we have
σ−1(2) = 1, τ(1) = n, σ(n) = n, hence στσ−1(2) = n

and
σ−1(n) = n, τ(n) = 1, σ(1) = 2, hence στσ−1(n) = 2.

Therefore
στσ−1 = (2, n).

(b) We deduce from (a) that for 0 ≤ k ≤ n− 2,

σkτσ−k = (k + 1, n).

Since Sn is generated by the n− 1 transpositions (1, n), (2, n), . . . , (n− 1, n), it is also generated by τ and σ.
(c) Let G be a transitive subgroup of Sn containing a n− 1 cycle and a transposition. We label the elements in such
a way that the cycle of length n − 1 is (1, 2, . . . , n − 1). Since G is transitive, the transposition does not fix n. We
permute the elements, if necessary, so that the transposition is (1, n). From (b) we deduce that G = Sn.

http://www.rnta.eu/nap/index.php
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