NEPAL ALGEBRA PROJECT 2016

MODULE III MODEL QUESTIONS

(1) Let $f = X^3 - 2$ over \mathbb{Q} , and let $\omega = e^{2\pi i/3}$.	
(a) Prove that $E = \mathbb{Q}[\sqrt[3]{2}, \omega]$ is a splitting field for f .	
	(2 marks)
(b) Calculate $ E:\mathbb{Q} $ and give the structure of $\operatorname{Gal}(E/\mathbb{Q})$.	
	(4 marks)
(c) Write down the lattice of intermediate subfields for the exte	ension E/\mathbb{Q} .
	(4 marks)
(2) (a) Give the definition of a constructible angle.	(- ·)
2	(2 marks)
(b) Prove that the angle $\frac{2\pi}{34}$ is constructible.	
0º	(3 marks)
(c) Explain how to construct the number $\sqrt{7}$ using ruler are	d compass,
and prove that the number $\sqrt[3]{7}$ is not constructible.	1 /
-	(5 marks)