MODULE 3: EXERCISE SHEET 2

These problems are due Sunday, 19 June, 2016. They must be sent to nap@rnta.eu (copy to nickgill@cantab.net) by 10 pm Nepal time.

- (1) Prove that the extension $\mathbb{Q}[\sqrt{2} + \sqrt{3}]/\mathbb{Q}$ is Galois, and that the associated Galois group is non-cyclic.¹
- (2) Prove Lemma 1.35 of Milne. (i.e. Show that every number in \mathbb{Q} is constructible.)
- (3) (a) Suppose that G is a group of order 2^k for some integer $k \ge 1$. Prove that Z(G), the center of G, is non-trivial.
 - (b) Use (a) to prove that if G is a group of order 2^k for some integer $k \ge 1$, then there is a series of groups

$$\{1\} = G_0 \lhd G_1 \lhd G_2 \lhd \cdots \lhd G_k = G$$

such that $|G_i : G_{i-1}| = 2$ for i = 1, ..., k.

- (c) Use (b) to prove that if α is a real number that lies in a Galois extension E/\mathbb{Q} with $|\operatorname{Gal}(E/\mathbb{Q})| = 2^k$ for some integer k, then α is constructible.
- (4) Construct a regular pentagon. (This is tricky: you might wish to use wikipedia, in which case please make sure that you explain your answer carefully.)
- (5) Suppose that P = (x, y) is a constructible point. Let α and β be elements of $\mathbb{Q}(x, y)$. Show that (α, β) is a constructible point.
- (6) Prove that if a regular p-gon can be constructed, then a regular 2p-gon can be constructed.
- (7) Can a regular 9-gon be constructed?
- (8) Do Exercise 1.4 of Milne. (i.e. Prove that with straight-edge, compass, and angle trisector, it is possible to construct a regular 7-gon refer to E.g. 3.21).
- (9) (**Revision**) Show that over \mathbb{F}_2 , one can find polynomials of degree ≤ 3 with Galois group $\{1\}, C_2$ and C_3 but **not** S_3 .
- (10) (Optional extra) Do the previous question for \mathbb{F}_3 instead of \mathbb{F}_2 .
- (11) (Optional extra) Prove that the origami-construction of $\sqrt[3]{2}$ that was done in class is correct.

¹This exercise corrects an erroneous assertion that I made verbally in the first week of classes.