
MODULE 3: EXERCISE SHEET 1

These problems are due Sunday, 12 June, 2016. They must be sent to nap@rnta.eu (copy to
nickgill@cantab.net) by 10 pm Nepal time.

(1) Let p be an odd prime, and let ζ be a primitive pth root of 1 in C. Let E = Q[ζ] and let G = Gal(E/Q);
thus G = (Z/pZ)×. Let H be the subgroup of index 2 in G. Put α =

∑
i∈H ζ

i and β =
∑

i∈G\H ζ
i.

Show:
(a) α and β are fixed by H;
(b) if σ ∈ G \H, then σα = β, σβ = α.
Thus α and β are roots of the polynomial X2 +X+αβ ∈ Q[X]. Compute αβ and show that the fixed
field of H is Q[

√
p] when p ≡ 1 (mod 4), and Q[

√
−p] when p ≡ 3 (mod 4).

Answer. Parts (a) and (b) both follow from the fact that if a, g ∈ G and H is a subgroup of G,
then Ha is a coset of H, as is Hag. In our particular case, if g ∈ H, then Hag = Ha, while if
g = σ ∈ G \H, then Hag 6= Ha.

(a) Let h ∈ H, and observe that

αh =
∑
i∈H

ζ ih =
∑
i∈H

ζ i = α

βh =
∑
i∈G\H

ζ ih =
∑
i∈G\H

ζ i = α.

(b) Let h ∈ H, and observe that

αh =
∑
i∈H

ζ iσ =
∑
i∈G\H

ζ i = β

βh =
∑
i∈G\H

ζ ih =
∑
i∈G\H

ζ i = α.

Then f = (X − α)(X − β) = X − tX + αβ and, since t is the sum of all the powers of ζ, and
elementary number theory asserts that t = −1, α and β are the roots of X2 +X + αβ.

If p ≡ 3 (mod 4), then αβ = p+1
4

, and the quadratic formula implies that the roots of f are −1±
√
−p

2
,

and the result follows.

If p ≡ 1 (mod 4), then αβ = p−1
4

, and the quadratic formula implies that the roots of f are
−1±√p

2
,

and the result follows.

(2) (a) Prove that if g is a group for which g2 = 1 for all g ∈ G, then G is abelian.
(b) Prove that the only non-abelian groups of order 8 are the quaternion group, Q8, and D4.

Answer. (a) Let g, h ∈ G. Then ghgh = (gh)2 = 1. This implies that gh = h−1g−1, but g = g−1 and
h = h−1, hence gh = hg.

(b) Let G be non-abelian of order 8. By (a), G must have an element g of order 4. Then N = 〈g〉 is
of index 2 in G and hence is normal. Suppose there exists h ∈ G \N with h2 = 1. Write H = 〈h〉
and notice that G = N o θH. The group H can only act on N in two possible ways: either θ is
trivial, G = N ×H and G is abelian, or else θ is non-trivial and hgh−1 = g−1, in which case G
is dihedral.
Thus we may assume that if h ∈ G \ N , then h is of order 4 (note that it cannot be of order 8,
else G is abelian). Now hgh−1 6= g, else G would be abelian, thus hgh−1 = g−1. This equation
completely specifies the group multiplication table for G (why?), and since Q8 is non-abelian of
order 8 and is not dihedral, we conclude that G = Q8.
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(3) Let M = Q[
√

2,
√

3] and E = M

[√
(
√

2 + 2)(
√

3 + 3)

]
.

(a) Show that M is Galois over Q with Galois group the 4-group C2 × C2.
(b) Show that E is Galois over Q with Galois group Q8.

Answer. (a) M is the splitting field of (X2−2)(X2−3) and so M : Q is a Galois extension of degree
4. One can verify that the following are the non-trivial maps in Gal(M/Q), and they are all of
order 2:

θ1 :
√

2 7→
√

2,
√

3 7→ −
√

3

θ2 :
√

2 7→ −
√

2,
√

3 7→
√

3

θ3 :
√

2 7→ −
√

2,
√

3 7→ −
√

3

Observe that(
X −

√
(−
√

2 + 2)(
√

3 + 3)

)(
X −

√
(−
√

2 + 2)(−
√

3 + 3)

)(
X −

√
(
√

2 + 2)(
√

3 + 3)

)
×(

X −
√

(
√

2 + 2)(−
√

3 + 3)

)(
X +

√
(−
√

2 + 2)(
√

3 + 3)

)(
X +

√
(−
√

2 + 2)(−
√

3 + 3)

)
×(

X +

√
(
√

2 + 2)(
√

3 + 3)

)(
X +

√
(
√

2 + 2)(−
√

3 + 3)

)
is equal to

f = X8 − 24X6 + 144X4 − 288X2 + 144.

Then E is the splitting field of f over Q (why?), and so E : Q is Galois.
Now, to see that Gal(E/Q) is the quaternion group, one can check that all but two of its elements

are of order 4. (There are various ways of doing this.)

(4) Let G be the Galois group of f(X) = X4 − 2 over Q. Thus if θ is the positive fourth root of 2, then
G is the Galois group of K : Q where K = Q(θ, i).
(a) Describe all 8 automorphisms in G.
(b) Show that G is isomorphic to the dihedral group D4.
(c) The group G has two normal subgroups N1 and N2 that are of order 4 and are not cyclic. Write

down the elements of N1 and N2 and verify that the corresponding fixed fields, KN1 and KN2 , are
normal extensions of Q.

Answer. We do (a) and (b) in one go, making use of
http: // math. stackexchange. com/ questions/ 1231921/ galois-group-of-x4-2 .
Since L = Q( 4

√
2) is real of degree 4, we see that K is a proper extension of L, and since

[Q(i) : Q] = 2 we see the total degree of the extension is 2 · 4 = 8. But then we have that
Gal (K/Q) ≤ S4 is a subgroup of S4 of order 8. This implies it is a Sylow-2 subgroup of S4, all
of which are isomorphic–by the second Sylow theorem. We know that D8, the dihedral group of
order 8, is such a subgroup, so that gives the isomorphism type.
But then you know what to look for as explicit representations go, you note that relative to the
ordering

αj = ij
4
√

2, 1 ≤ j ≤ 4

we have the 4-cycle (1234) given by the automorphism{
4
√

2 7→ i 4
√

2

i 7→ i

which is enough to totally determine it, since those are generators of the extension. Clearly also

http://math.stackexchange.com/questions/1231921/galois-group-of-x4-2


MODULE 3: EXERCISE SHEET 1 3

{
4
√

2 7→ 4
√

2

i 7→ −i
is represented by the transposition (13), and these two generate the group, so give you everything
you need for a fully explicit description.
(Note, by the way, that the four roots of X4 − 2 form a square on the complex plane, and the
action of the Galois group on these roots, corresponds exactly to the action of D4 on the plane.)
For (c), we can take N1 to be generated by rotation by π in this square, along with reflection in the
diagonals. One obtains that KN1 = Q[

√
2]. On the other hand, we can take N2 to be generated by

rotation by π, along with reflection in a line connecting two opposite edge mid-points. We obtain
that KN2 = Q[

√
−2].

(5) In this question we generalize Example 3.22 from the notes. Let f = Xp − 2 ∈ Q[x] (where p is a
prime), and let E be the splitting field of f over Q.
(a) Prove that f is irreducible.
(b) Prove that [E : Q] = p(p− 1).
(c) Prove that Gal(E/Q) has a normal subgroup N of order p, and calculate EN .
(d) Write down a subgroup H ≤ Gal(E,Q) of order p− 1.
(e) Prove that Gal(E/Q) = N oH, and describe the action of H on N .

Answer. (a) Use Eisenstein.
(b) Observe that E contains α = ζ p

√
2 where ζ is a primitive p-th root of unity. By taking powers

of α, we can conclude that E contains ζ and p
√

2. Thus we have the following inclusions, with
indexes included.

Q(
p
√

2, ζ)

Q(
p
√

2)

>

Q(ζ)

<

Q

∧

p
−

1>
<
p

Now one knows that |E : Q ≤ p(p− 1) (why?), and the fact that p and p− 1 are coprime implies
(by multiplicity of degrees) that |E : Q| = p(p− 1).

(c) The Fundamental Theorem of Galois Theory implies that it is sufficient to prove that there is an
intermediate field Q ⊂M ⊂ E with M normal over Q and |E : M | = p. For this take M = Q(ζ).

(d) Again, we invoke FTGT: take the field M1 = Q( p
√

2). Then H = Gal(E/M1) is a subgroup of
Gal(E,Q) of order p− 1.

(e) Since |H| and |N | are coprime and |H| · |N | = Gal(E/Q), we see immediately that Gal(E/Q) =
N oH. The action of H on N is isomorphic to the action of (Z/pZ)× on (Z/pZ)+ (although I’m
not going to prove that here – one can follow the same method as described in lectures).

(6) Describe the Galois groups of f = X6− 1 and X6 + 1 over Q. Write down the lattice of fields/ groups
for each polynomial, identifying which inclusions are normal.

Answer. The splitting field of X6 − 1 is Q[ζ] where ζ = e2πi/6. Since ζ is a root of X2 + X + 1, the
Galois group of X6 − 1 is of degree 2, and the lattice of fields is easy.

Similarly the splitting field of X6 + 1 is Q[η] where ζ = e2πi/12. Since ζ is a root of X4 −X2 + 1,
the Galois group of X6− 1 is of degree 4; the Galois group is isomorphic to C2×C2 (just observe that
every non-trivial automorphism has order 2), and so there are three intermediate fields, Q[i], Q[eπ/3

and Q(ζ + ζ−1) = Q(
√

3). Since the Galois group is abelian, all inclusions are normal.

(7) The complex numbers i
√

3 and 1 + i
√

3 are roots of the quartic f = X4− 2X3 + 7X2− 6X + 12. Does
there exist an automorphism σ of the splitting field extension for f over Q with σ(i

√
3) = 1 + i

√
3?
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Answer. No. You can see this in two different ways. Observe first that i
√

3 has minimal polynomial
X2 + 3, while 1 + i

√
3 does not (in particular, the two listed roots are roots of different irreducible

factors of f).
Alternatively, notice that if such an automorphism σ did exist, then σk(i

√
3) = k + i

√
3, and so σ

would be of infinite order, which is impossible.

(8) Describe the transitive subgroups of S3, S4 and S5.

Answer. S3: A3 and S3.
S4: A4, S4, V (an elementary abelian group of order 4), C4 (three of these), D4 (three of these).
S5: A5, S5, D5 (three of these), C5 (three of these), C5 o C4 (three of these).

(9) Find the Galois group of X4− 2 over (a) F3, (b), F7. (You calculated the Galois group of X4− 2 over
Q in question (4).)

Answer. For this answer and the next it is convenient to know how to check if a polynomial of form
X4 + e is irreducible. If it is divisible by a linear factor, then there is a root, so this can be checked
directly. To check for quadratic factors, we suppose that

(X2 + aX + b)(X2 + cX + d) = X4 + e.

Multiplying out and equating coefficients, we obtain that one of the following holds (provided the field
characteristic is not 2):
• a = c = 0 and b = −d;
• a = −c and b = −d = a2

2
.

With this in mind, we proceed to the question itself:
(a) Over F3, and using the calculations above, we find that

X4 − 2 = (X2 +X + 2)(X2 + 2X + 2).

Note that both of the quadratic factors are irreducible. Let α be a root of X2 +X+2. Now observe
that 2α is a root of X2 + 2X + 2. Thus F3[α] is the splitting field of X4 − 2, and since α has a
minimum polynomial of degree 2, we have |F3[α] : F3| = 2. Thus the Galois group of f over F3 is
of order 2: it is C2.

(b) Over F7, we have the following factorization into irreducibles:

X4 − 2 = (X − 2)(X + 2)(X2 + 4).

Thus to get a splitting field we need only adjoin a root of X2 + 4. As before, the Galois group is
C2.

(10) Find the Galois group of X4 + 2 over (a) Q, (b) F3, (c), F5.

Answer. (a) The roots of X4 +2 are ζ i 4
√

2 where ζ is a primitive 8-th root of unity, and i = 1, 3, 5, 7.
Thus the splitting field of X4 + 2 over Q is Q(ζ, i), and the analysis now proceeds very similarly
to question (4), so I will not repeat it. Note that the roots of f are, again, a square in the complex
plane (but this time edges are at an angle of π/4 with the axes) and, unsurprisingly, one obtains
that the Galois group is D4.

(b) Over F3, we have the following factorization into irreducibles:

X4 + 2 = (X − 1)(X + 1)(X2 + 1).

We need only adjoin a root of X2 + 1 thus the Galois group is C2.
(c) Over F5, we find that f = X4 + 2 does not have a root and (using the calculations from the

previous answer), it also fails to factorize into quadratics. Hence it is irreducible. Let α be a root
of f . Then α, 2α, 3α and 4α are all roots and we have

f = (X − α)(X − 2α)(X − 3α)(X − 4α).

Thus the splitting field of f is F3[α], which has degree 4 over F5. What is more the map

θ : F3[α]→ F3[α], α 7→ 2α
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generates the whole Galois group, and so the Galois group is cyclic: it is C4.
Remark: It turns out that Galois groups of polynomials over finite fields are always cyclic. This
will be proved later on.

(11) (Optional extra) Suppose that L : K is an extension with [L : K] = 2, that every element of L has
a square root in L, that every polynomial of odd degree in K[X] has a root in K and that charK 6= 2.
Let f be an irreducible polynomial in K[X], let M : L be a splitting field extension for f over L, Let
G = Gal(M : K) and let H = Gal(M : L).
(a) By considering the fixed field of a Sylow 2-subgroup of G, show that |G| = 2n.
(b) By considering a subgroup of index 2 in H, show that if n > 1 then there is an irreducible

quadratic in L[X].
(c) Show that L is algebraically closed.
(d) Show that the complex numbers are algebraically closed.

Answer not supplied for this.
(12) (Optional extra) By considering the splitting field of all polynomials of odd degree over F2, show

that the condition charK 6= 2 cannot be dropped from the previous question.
Answer not supplied for this.


