MODULE 3: EXERCISE SHEET 1

These problems are due Sunday, 12 June, 2016. They must be sent to nap@rnta.eu (copy to nickgill@cantab.net) by 10 pm Nepal time.

- (1) Let p be an odd prime, and let ζ be a primitive pth root of 1 in \mathbb{C} . Let $E = \mathbb{Q}[\zeta]$ and let $G = \operatorname{Gal}(E/\mathbb{Q})$; thus $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$. Let H be the subgroup of index 2 in G. Put $\alpha = \sum_{i \in H} \zeta^i$ and $\beta = \sum_{i \in G \setminus H} \zeta^i$. Show:
 - (a) α and β are fixed by H;
 - (b) if $\sigma \in G \setminus H$, then $\sigma \alpha = \beta$, $\sigma \beta = \alpha$.

Thus α and β are roots of the polynomial $X^2 + X + \alpha\beta \in \mathbb{Q}[X]$. Compute $\alpha\beta$ and show that the fixed field of H is $\mathbb{Q}[\sqrt{p}]$ when $p \equiv 1 \pmod{4}$, and $\mathbb{Q}[\sqrt{-p}]$ when $p \equiv 3 \pmod{4}$.

Answer. Parts (a) and (b) both follow from the fact that if $a, g \in G$ and H is a subgroup of G, then Ha is a coset of H, as is Hag. In our particular case, if $g \in H$, then Hag = Ha, while if $g = \sigma \in G \setminus H$, then $Hag \neq Ha$.

(a) Let $h \in H$, and observe that

$$\alpha^{h} = \sum_{i \in H} \zeta^{ih} = \sum_{i \in H} \zeta^{i} = \alpha$$
$$\beta^{h} = \sum_{i \in G \setminus H} \zeta^{ih} = \sum_{i \in G \setminus H} \zeta^{i} = \alpha.$$

(b) Let $h \in H$, and observe that

$$\alpha^{h} = \sum_{i \in H} \zeta^{i\sigma} = \sum_{i \in G \setminus H} \zeta^{i} = \beta$$
$$\beta^{h} = \sum_{i \in G \setminus H} \zeta^{ih} = \sum_{i \in G \setminus H} \zeta^{i} = \alpha.$$

Then $f = (X - \alpha)(X - \beta) = X - tX + \alpha\beta$ and, since t is the sum of all the powers of ζ , and elementary number theory asserts that t = -1, α and β are the roots of $X^2 + X + \alpha\beta$.

If $p \equiv 3 \pmod{4}$, then $\alpha\beta = \frac{p+1}{4}$, and the quadratic formula implies that the roots of f are $\frac{-1\pm\sqrt{-p}}{2}$, and the result follows.

If $p \equiv 1 \pmod{4}$, then $\alpha\beta = \frac{p-1}{4}$, and the quadratic formula implies that the roots of f are $\frac{-1\pm\sqrt{p}}{2}$, and the result follows.

- (2) (a) Prove that if g is a group for which $g^2 = 1$ for all $g \in G$, then G is abelian.
 - (b) Prove that the only non-abelian groups of order 8 are the quaternion group, Q_8 , and D_4 .

Answer. (a) Let $g, h \in G$. Then $ghgh = (gh)^2 = 1$. This implies that $gh = h^{-1}g^{-1}$, but $g = g^{-1}$ and $h = h^{-1}$, hence gh = hg.

(b) Let G be non-abelian of order 8. By (a), G must have an element g of order 4. Then N = ⟨g⟩ is of index 2 in G and hence is normal. Suppose there exists h ∈ G \ N with h² = 1. Write H = ⟨h⟩ and notice that G = N × θH. The group H can only act on N in two possible ways: either θ is trivial, G = N × H and G is abelian, or else θ is non-trivial and hgh⁻¹ = g⁻¹, in which case G is dihedral.

Thus we may assume that if $h \in G \setminus N$, then h is of order 4 (note that it cannot be of order 8, else G is abelian). Now $hgh^{-1} \neq g$, else G would be abelian, thus $hgh^{-1} = g^{-1}$. This equation completely specifies the group multiplication table for G (why?), and since Q_8 is non-abelian of order 8 and is not dihedral, we conclude that $G = Q_8$.

(3) Let
$$M = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$$
 and $E = M\left[\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)}\right]$.

- (a) Show that M is Galois over \mathbb{Q} with Galois group the 4-group $C_2 \times C_2$.
- (b) Show that E is Galois over \mathbb{Q} with Galois group Q_8 .
- **Answer.** (a) M is the splitting field of $(X^2-2)(X^2-3)$ and so $M : \mathbb{Q}$ is a Galois extension of degree 4. One can verify that the following are the non-trivial maps in $Gal(M/\mathbb{Q})$, and they are all of order 2:

$$\theta_1 : \sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto -\sqrt{3}$$
$$\theta_2 : \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto \sqrt{3}$$
$$\theta_3 : \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto -\sqrt{3}$$

Observe that

$$\begin{pmatrix} X - \sqrt{(-\sqrt{2}+2)(\sqrt{3}+3)} \end{pmatrix} \begin{pmatrix} X - \sqrt{(-\sqrt{2}+2)(-\sqrt{3}+3)} \end{pmatrix} \begin{pmatrix} X - \sqrt{(\sqrt{2}+2)(\sqrt{3}+3)} \end{pmatrix} \times \\ \begin{pmatrix} X - \sqrt{(\sqrt{2}+2)(-\sqrt{3}+3)} \end{pmatrix} \begin{pmatrix} X + \sqrt{(-\sqrt{2}+2)(\sqrt{3}+3)} \end{pmatrix} \begin{pmatrix} X + \sqrt{(-\sqrt{2}+2)(-\sqrt{3}+3)} \end{pmatrix} \times \\ \begin{pmatrix} X + \sqrt{(\sqrt{2}+2)(\sqrt{3}+3)} \end{pmatrix} \begin{pmatrix} X + \sqrt{(\sqrt{2}+2)(-\sqrt{3}+3)} \end{pmatrix} \end{pmatrix}$$

is equal to

$$f = X^8 - 24X^6 + 144X^4 - 288X^2 + 144$$

Then E is the splitting field of f over \mathbb{Q} (why?), and so $E : \mathbb{Q}$ is Galois. Now, to see that $\operatorname{Gal}(E/\mathbb{Q})$ is the quaternion group, one can check that all but two of its elements are of order 4. (There are various ways of doing this.)

- (4) Let G be the Galois group of $f(X) = X^4 2$ over \mathbb{Q} . Thus if θ is the positive fourth root of 2, then G is the Galois group of $\mathbb{K} : \mathbb{Q}$ where $\mathbb{K} = \mathbb{Q}(\theta, i)$.
 - (a) Describe all 8 automorphisms in G.
 - (b) Show that G is isomorphic to the dihedral group D_4 .
 - (c) The group G has two normal subgroups N_1 and N_2 that are of order 4 and are not cyclic. Write down the elements of N_1 and N_2 and verify that the corresponding fixed fields, \mathbb{K}^{N_1} and \mathbb{K}^{N_2} , are normal extensions of \mathbb{Q} .

Answer. We do (a) and (b) in one go, making use of

http://math.stackexchange.com/questions/1231921/galois-group-of-x4-2.

Since $L = \mathbb{Q}(\sqrt[4]{2})$ is real of degree 4, we see that K is a proper extension of L, and since $[\mathbb{Q}(i) : \mathbb{Q}] = 2$ we see the total degree of the extension is $2 \cdot 4 = 8$. But then we have that $\operatorname{Gal}(K/\mathbb{Q}) \leq S_4$ is a subgroup of S_4 of order 8. This implies it is a Sylow-2 subgroup of S_4 , all of which are isomorphic-by the second Sylow theorem. We know that D_8 , the dihedral group of order 8, is such a subgroup, so that gives the isomorphism type.

But then you know what to look for as explicit representations go, you note that relative to the ordering

$$\alpha_j = i^j \sqrt[4]{2}, 1 \le j \le 4$$

we have the 4-cycle (1234) given by the automorphism

$$\begin{cases} \sqrt[4]{2} \mapsto i \sqrt[4]{2} \\ i \mapsto i \end{cases}$$

which is enough to totally determine it, since those are generators of the extension. Clearly also

$$\begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \\ i \mapsto -i \end{cases}$$

is represented by the transposition (13), and these two generate the group, so give you everything you need for a fully explicit description.

(Note, by the way, that the four roots of $X^4 - 2$ form a square on the complex plane, and the action of the Galois group on these roots, corresponds exactly to the action of D_4 on the plane.) For (c), we can take N_1 to be generated by rotation by π in this square, along with reflection in the diagonals. One obtains that $\mathbb{K}^{N_1} = \mathbb{Q}[\sqrt{2}]$. On the other hand, we can take N_2 to be generated by rotation by π , along with reflection in a line connecting two opposite edge mid-points. We obtain that $\mathbb{K}^{N_2} = \mathbb{Q}[\sqrt{-2}]$.

- (5) In this question we generalize Example 3.22 from the notes. Let $f = X^p 2 \in \mathbb{Q}[x]$ (where p is a prime), and let E be the splitting field of f over \mathbb{Q} .
 - (a) Prove that f is irreducible.
 - (b) Prove that $[E : \mathbb{Q}] = p(p-1)$.
 - (c) Prove that $\operatorname{Gal}(E/\mathbb{Q})$ has a normal subgroup N of order p, and calculate E^N .
 - (d) Write down a subgroup $H \leq \operatorname{Gal}(E, \mathbb{Q})$ of order p-1.
 - (e) Prove that $\operatorname{Gal}(E/\mathbb{Q}) = N \rtimes H$, and describe the action of H on N.

Answer. (a) Use Eisenstein.

(b) Observe that E contains $\alpha = \zeta \sqrt[p]{2}$ where ζ is a primitive p-th root of unity. By taking powers of α , we can conclude that E contains ζ and $\sqrt[p]{2}$. Thus we have the following inclusions, with indexes included.

Now one knows that $|E: \mathbb{Q} \leq p(p-1)$ (why?), and the fact that p and p-1 are coprime implies (by multiplicity of degrees) that $|E: \mathbb{Q}| = p(p-1)$.

- (c) The Fundamental Theorem of Galois Theory implies that it is sufficient to prove that there is an intermediate field $\mathbb{Q} \subset M \subset E$ with M normal over \mathbb{Q} and |E:M| = p. For this take $M = \mathbb{Q}(\zeta)$.
- (d) Again, we invoke FTGT: take the field $M_1 = \mathbb{Q}(\sqrt[p]{2})$. Then $H = \text{Gal}(E/M_1)$ is a subgroup of $\text{Gal}(E,\mathbb{Q})$ of order p-1.
- (e) Since |H| and |N| are coprime and $|H| \cdot |N| = \operatorname{Gal}(E/\mathbb{Q})$, we see immediately that $\operatorname{Gal}(E/\mathbb{Q}) = N \rtimes H$. The action of H on N is isomorphic to the action of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ on $(\mathbb{Z}/p\mathbb{Z})^+$ (although I'm not going to prove that here one can follow the same method as described in lectures).
- (6) Describe the Galois groups of $f = X^6 1$ and $X^6 + 1$ over \mathbb{Q} . Write down the lattice of fields/ groups for each polynomial, identifying which inclusions are normal.

Answer. The splitting field of $X^6 - 1$ is $\mathbb{Q}[\zeta]$ where $\zeta = e^{2\pi i/6}$. Since ζ is a root of $X^2 + X + 1$, the Galois group of $X^6 - 1$ is of degree 2, and the lattice of fields is easy.

Similarly the splitting field of $X^6 + 1$ is $\mathbb{Q}[\eta]$ where $\zeta = e^{2\pi i/12}$. Since ζ is a root of $X^4 - X^2 + 1$, the Galois group of $X^6 - 1$ is of degree 4; the Galois group is isomorphic to $C_2 \times C_2$ (just observe that every non-trivial automorphism has order 2), and so there are three intermediate fields, $\mathbb{Q}[i]$, $\mathbb{Q}[e^{\pi/3}$ and $\mathbb{Q}(\zeta + \zeta^{-1}) = \mathbb{Q}(\sqrt{3})$. Since the Galois group is abelian, all inclusions are normal.

(7) The complex numbers $i\sqrt{3}$ and $1+i\sqrt{3}$ are roots of the quartic $f = X^4 - 2X^3 + 7X^2 - 6X + 12$. Does there exist an automorphism σ of the splitting field extension for f over \mathbb{Q} with $\sigma(i\sqrt{3}) = 1 + i\sqrt{3}$? **Answer.** No. You can see this in two different ways. Observe first that $i\sqrt{3}$ has minimal polynomial $X^2 + 3$, while $1 + i\sqrt{3}$ does not (in particular, the two listed roots are roots of **different** irreducible factors of f).

Alternatively, notice that if such an automorphism σ did exist, then $\sigma^k(i\sqrt{3}) = k + i\sqrt{3}$, and so σ would be of infinite order, which is impossible.

(8) Describe the transitive subgroups of S_3 , S_4 and S_5 .

Answer. S_3 : A_3 and S_3 . S_4 : A_4 , S_4 , V (an elementary abelian group of order 4), C_4 (three of these), D_4 (three of these). S_5 : A_5 , S_5 , D_5 (three of these), C_5 (three of these), $C_5 \rtimes C_4$ (three of these).

(9) Find the Galois group of $X^4 - 2$ over (a) \mathbb{F}_3 , (b), \mathbb{F}_7 . (You calculated the Galois group of $X^4 - 2$ over \mathbb{Q} in question (4).)

Answer. For this answer and the next it is convenient to know how to check if a polynomial of form $X^4 + e$ is irreducible. If it is divisible by a linear factor, then there is a root, so this can be checked directly. To check for quadratic factors, we suppose that

$$(X^{2} + aX + b)(X^{2} + cX + d) = X^{4} + e.$$

Multiplying out and equating coefficients, we obtain that one of the following holds (provided the field characteristic is not 2):

- a = c = 0 and b = -d;
- a = -c and $b = -d = \frac{a^2}{2}$.

With this in mind, we proceed to the question itself:

(a) Over \mathbb{F}_3 , and using the calculations above, we find that

$$X^4 - 2 = (X^2 + X + 2)(X^2 + 2X + 2).$$

Note that both of the quadratic factors are irreducible. Let α be a root of $X^2 + X + 2$. Now observe that 2α is a root of $X^2 + 2X + 2$. Thus $\mathbb{F}_3[\alpha]$ is the splitting field of $X^4 - 2$, and since α has a minimum polynomial of degree 2, we have $|\mathbb{F}_3[\alpha] : F_3| = 2$. Thus the Galois group of f over \mathbb{F}_3 is of order 2: it is C_2 .

(b) Over \mathbb{F}_7 , we have the following factorization into irreducibles:

$$X^4 - 2 = (X - 2)(X + 2)(X^2 + 4).$$

Thus to get a splitting field we need only adjoin a root of $X^2 + 4$. As before, the Galois group is C_2 .

- (10) Find the Galois group of $X^4 + 2$ over (a) \mathbb{Q} , (b) \mathbb{F}_3 , (c), \mathbb{F}_5 .
 - Answer. (a) The roots of $X^4 + 2$ are $\zeta^i \sqrt[4]{2}$ where ζ is a primitive 8-th root of unity, and i = 1, 3, 5, 7. Thus the splitting field of $X^4 + 2$ over \mathbb{Q} is $\mathbb{Q}(\zeta, i)$, and the analysis now proceeds very similarly to question (4), so I will not repeat it. Note that the roots of f are, again, a square in the complex plane (but this time edges are at an angle of $\pi/4$ with the axes) and, unsurprisingly, one obtains that the Galois group is D_4 .
 - (b) Over \mathbb{F}_3 , we have the following factorization into irreducibles:

$$X^{4} + 2 = (X - 1)(X + 1)(X^{2} + 1).$$

We need only adjoin a root of $X^2 + 1$ thus the Galois group is C_2 .

(c) Over \mathbb{F}_5 , we find that $f = X^4 + 2$ does not have a root and (using the calculations from the previous answer), it also fails to factorize into quadratics. Hence it is irreducible. Let α be a root of f. Then α , 2α , 3α and 4α are all roots and we have

$$f = (X - \alpha)(X - 2\alpha)(X - 3\alpha)(X - 4\alpha).$$

Thus the splitting field of f is $\mathbb{F}_3[\alpha]$, which has degree 4 over \mathbb{F}_5 . What is more the map

$$\theta : \mathbb{F}_3[\alpha] \to \mathbb{F}_3[\alpha], \ \alpha \mapsto 2\alpha$$

generates the whole Galois group, and so the Galois group is cyclic: it is C_4 . **Remark**: It turns out that Galois groups of polynomials over finite fields are always cyclic. This will be proved later on.

- (11) (Optional extra) Suppose that L: K is an extension with [L:K] = 2, that every element of L has a square root in L, that every polynomial of odd degree in K[X] has a root in K and that $\operatorname{char} K \neq 2$. Let f be an irreducible polynomial in K[X], let M:L be a splitting field extension for f over L, Let $G = \operatorname{Gal}(M:K)$ and let $H = \operatorname{Gal}(M:L)$.
 - (a) By considering the fixed field of a Sylow 2-subgroup of G, show that $|G| = 2^n$.
 - (b) By considering a subgroup of index 2 in H, show that if n > 1 then there is an irreducible quadratic in L[X].
 - (c) Show that L is algebraically closed.
 - (d) Show that the complex numbers are algebraically closed.

Answer not supplied for this.

(12) (Optional extra) By considering the splitting field of all polynomials of odd degree over \mathbb{F}_2 , show that the condition char $K \neq 2$ cannot be dropped from the previous question.

Answer not supplied for this.