Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University, Kirtipur, Kathmandu, Nepal Fields and Galois Theory

Course Instructor: Prof. Michel Waldschmidt

Summary of NAP: Module 4-Lecture 4

• The symmetric group \mathfrak{S}_n and the alternating group \mathfrak{A}_n . The symmetric group \mathfrak{S}_n . Examples: n = 1, 2, 3, 4. Order. Transpositions, cycles. Decomposition into disjoint cycles. Relation

$$(a_1, a_2)(a_2, a_3) \cdots (a_{k-1}, a_k) = (a_1, a_2, \dots, a_k).$$

- Inversion, number of inversions, signature: $sign = (-1)^{\#inversions}$.
- Group acting on a set: definition. Any group G is isomorphic to a subgroup of the symmetric group \mathfrak{S}_G . In particular any finite group of order n is isomorphic to a subgroup of \mathfrak{S}_n .
- Action of \mathfrak{S}_n on the set of maps $\mathbf{Z}^n \to \mathbf{Z}$

$$\sigma f(a_1,\ldots,a_n) = f(a_{\sigma(1)},\ldots,a_{\sigma(n)}).$$

Example:

$$p(a_1,\ldots,a_n)=\prod_{1\leq i\leq n}(a_j-a_i).$$

• Consequence: $\sigma: \mathfrak{S}_n \to \{-1, +1\}$ is a group homomorphism, surjective for $n \geq 2$. Kernel: alternating group \mathfrak{A}_n .

- Signature of a cycle of length k: $(-1)^{k-1}$.
- Discriminant of a polynomial. Proposition 4.1 and Corollary 4.2 of Milne. Polynomials of degree 2 and 3: examples 4.5 and 4.6.