Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University,Kirtipur, Kathmandu,Nepal Fields and Galois Theory

Course Instructor: Prof. Michel Waldschmidt

Lecture 1

- Correction of the mid term exam
- Examples of reducible polynomials without a root in the field.
- A finite extension is algebraic, however there are algebraic extensions which are not finite.
- A cyclic subgroup may or may not be normal.
- If $f \in F[X]$ is a polynomial such that $f(\alpha) = 0$, this does not imply that f is the minimal polynomial of α over F.
- $[\mathbf{Q}(e^{2i\pi/n}):\mathbf{Q}] = n-1$ only when n is prime.
- In characteristic $p, X^{p^n} X = X(X^{p^n-1} 1)$ is not equal to $X(X 1)^{p^n-1}$.
- The theorems of the course should be used, not proved again: an extension of degree n of the prime field \mathbf{F}_p has p^n elements. The results on constructible numbers should also be used, not reproved.