Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University,Kirtipur, Kathmandu,Nepal Fields and Galois Theory

Course Instructor: Prof. Nick Gill

Summary of NAP: Module 3, Lecture 4

- 1. Defined a constructible point using the definition given in Garling.
- 2. We then formally defined a constructible number to be a number c such that the point (c, 0) is constructible. (A formal definition is not given in Milne.)
- 3. Writing ${\mathscr C}$ for the set of all constructible numbers, we proved that
 - (a) the set of all constructible points is $\mathscr{C} \times \mathscr{C}$;
 - (b) \mathscr{C} is a field that contains \mathbb{Q} ;
 - (c) Theorem 1.6 of Milne: a real number z is constructible if and only if it is contained in a field of form $\mathbb{Q}[\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_k}]$ where $a_i > 0$ and $a_i \in \mathbb{Q}[\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_i}]$;
 - (d) if z is construcible, then z lies in an extension E such that $|E : \mathbb{Q}| = 2^k$. In particular \mathscr{C} is contained in the set of all algebraic numbers but, on the other hand, $\sqrt[3]{2}$ is not constructible.