Nepal Algebra Project(NAP) Central Department of Mathematics Tribhuvan University,Kirtipur, Kathmandu,Nepal Fields and Galois Theory

Course Instructor: Prof. Roger Wiegand and Prof. Sylvia Wiegand

Summary of NAP: Module 1, Lecture 6 - Wednesday May 18 2016

Reviewed the Finite-algebraic Theorem from Lecture 5: For F subset E fields, these are equivalent:

- 1. E/F is finite (i.e. finite vector space dimension).
- 2. E/F is finitely generated as a field extension and E is algebraic over F.
- 3. There exist algebraic elements $\alpha_1, \alpha_2, \ldots, \alpha_n$ of E, such that $E = F(\alpha_1, \alpha_2, \ldots, \alpha_n)$.

Stated and proved:

Corollary. Let K/F be a field extension and let \overline{F} be the set of elements of K that are algebraic over F. Then \overline{F} is a subfield of K with $F \subset \overline{F} \subset K$. The field \overline{F} is called the algebraic closure of $F \in K$.

Discussed the set of algebraic numbers in the complex numbers $\mathbb C$ over the rational numbers $\mathbb Q$.

Showed that for $\alpha = \sqrt{2} + \sqrt{3}$, $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Later showed that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ and consequently that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ (By Eisenstein $x^2 - 2$, and $x^2 - 3$ are irreducible over \mathbb{Q} and so $\sqrt{2}, \sqrt{3} \notin \mathbb{Q}$).

Discussed an example of the Louisville numbers (with big gaps in the decimal expansion): $\sum_{i=1}^{\infty} 1/10^{i!}$. These are transcendental and it is easier to show they are transcendental than other transcendental numbers (see book).

Discussed countable and uncountable cardinalities. Stated and proved:

Theorem. For K/F a field extension with F countable, the set of elements of K that are algebraic over F is countable.

To prove this, stated and outlined/picture-proved N lemmas: For X, X_n, Y sets

- 1. X, Y countable $\implies X \times Y$ countable;
- 2. X countable and an injection takes Y into $X \implies Y$ is countable;
- 3. X countable and a surjection takes $X \to Y \implies Y$ countable;
- 4. Y a countable union of countable sets $X_n \implies Y$ is countable;
- 5. F a countable field and V a vector space over F with a countable basis \implies V is countable;

÷

N. If X is countable and $Y \to X$ is countable-to-one, then Y is countable.

Corollary: In the complex numbers \mathbb{C} , the subfield of elements that are algebraic over the rationals \mathbb{Q} is countable. Elements of this set are called algebraic numbers.

Proved part 1 of **Proposition 1.20** Multiplication of degree (part 2 was proved in Lecture 5). Proved the following tw statements:

Proposition (algebraic extensions are transitive). If $F \subseteq K \subseteq L$ are fields with K/F algebraic and L/K algebraic, then L/F is algebraic.

Proposition. If $F \subseteq K \subseteq L$ are fields and $L = F[\alpha]$ where alpha is algebraic, then the minimal polynomial for α over K divides the minimal polynomial for α over F.

Worked two problems:

- Show if [L:F] = p, a prime integer, then there are no fields K properly between F and L.
- If $F \subseteq L$ is algebraic and T is an integral domain with $F \subseteq T \subseteq L$, prove that T is a field.

Another problem the students might like to try for extra practice is ${\bf Exercise \ 1-5}$ in Milne.