Tribhuvan University Institute of Science and Technology

Kirtipur, Kathmandu Nepal

Final Examination 2073 September

Subject: Mathematics (Field and Galois theory)

Course No.: Math 724

Level: M. Phil.(math)/I Semester

Full Marks: 60

Pass Marks: 30

Time: 2:00 hr

Attempt any 5 questions. Each question carries equal marks. Write your answer in detail as far as possible.

- 1. Show that for any rational number q, the real number $\cos(q\pi)$ is algebraic. Hint: consider $e^{i\pi q}$
- 2. Let α be an algebraic complex number. Give the definition of the minimal polynomial f_{α} of α over \mathbb{Q} and prove that deg $f_{\alpha} = [\mathbb{Q}[\alpha] : \mathbb{Q}]$.
- 3. Show that $\mathbb{Q}[\sqrt{5} \sqrt[3]{2}] = \mathbb{Q}[\sqrt{5} + \sqrt[3]{2}]$ and compute the dimension $[\mathbb{Q}[\sqrt{5} + \sqrt[3]{2}] : \mathbb{Q}]$ justifying your answer.
- 4. Show that any finite extension of fields is necessarily algebraic.
- 5. Give the definition of contructible number and determine which among $\sqrt[3]{2}$, $\sqrt[4]{8}$ and $\sqrt{5} + \sqrt{7}$ is constructible.
- 6. Describe the splitting field of the polynomial $(X^4 5X)(X^2 + 3)$ and write down the elements of its Galois group.
- 7. State in its full generality the Fundamental Theorem of Galois Theory (NOTE: sometimes it is also called the Galois Correspondance Theorem).