CIMPA research school on Group Actions in Arithmetic and Geometry

Exercises on Finite fields

February 20, 2020

- 1. Determine $(\alpha^2 + \alpha + 3)^{-1} \in (\mathbb{F}_5(\alpha), \alpha^3 + \alpha^2 + 3\alpha + 4 = 0).$
- 2. Suppose that F_1 and F_2 are finite fields of characteristic p and that $\Psi : F_1 \longrightarrow F_2$ is a field isomorphism.
 - (a) Show that if $\alpha \in F_1$ and $f \in \mathbb{F}_p[X]$ is such that $f(\alpha) = 0$, then $f(\Psi(\alpha)) = 0$;
 - (b) deduce that $f(\alpha^{p^k}) = 0$ for all $k \in \mathbb{N}$ (*hint: apply the above with* $\Psi = \Phi$ *the Frobenius automorphism*);
 - (c) if furthermore f is irreducible of degree n, show that all the roots of f are $\alpha, \alpha^{p} \cdots, \alpha^{p^{n-1}}$.
- 3. Construct explicitly isomorphisms between:
 - (a) $(\mathbb{F}_3(\alpha), \alpha^2 = 2)$ and $(\mathbb{F}_3(\beta), \beta^2 = \beta + 1);$
 - (b) $(\mathbb{F}_2(\rho), \rho^3 = \rho + 1)$ and $(\mathbb{F}_2(\gamma), \gamma^3 = \gamma^2 + 1);$
 - (c) $(\mathbb{F}_5(\xi), \xi^2 = 2)$ and $(\mathbb{F}_5(\zeta), \zeta^2 = \zeta 1)$.
- 4. List all *irreducible* and *primitive* polynomials of degree n in $\mathbb{F}_p[X]$ for $n \leq 5$ and $p \leq 5$.
- 5. An element α of a finite field \mathbb{F}_{p^n} is said to be *normal* if $\alpha, \alpha^p \cdots, \alpha^{p^{n-1}}$ form an \mathbb{F}_p -basis of \mathbb{F}_{p^n} . The "Normal Basis Theorem" postulates the existence of a normal element in every finite field. The minimal polynomials of a normal element is called Normal Polynomial. Determine all normal polynomials of degree n in $\mathbb{F}_p[X]$ for $n \leq 3$ and $p \leq 3$.
- 6. Determine the number of elements of the *splitting field* of the following polynomials:

(a)
$$\prod_{d \le 10} X^{p^d} - X \in \mathbb{F}_p[X]$$
 (b) $(X^2 + 2)(X^2 - X - 1)(X^4 + X + 1)(X^{80} - 1) \in \mathbb{F}_3[X].$

- 7. Determine the number of irreducible factors of the polynomials above.
- 8. Determine the multiplicative order and the minimal polynomial over \mathbb{F}_p of all the elements in the following fields: $(\mathbb{F}_3(\alpha), \alpha^2 = 2), (\mathbb{F}_2(\rho), \rho^3 = \rho + 1), (\mathbb{F}_5(\xi), \xi^2 = 2), \mathbb{F}_7$ and \mathbb{F}_{11} .
- 9. Write down a Pseudo Code to test if a given polynomial in $\mathbb{F}_p[X]$ of degree *n* is or not irreducible.