The modular group Valerio Talamanca (Università Roma Tre & RNTA)

CIMPA research school Group Actions in Arithmetic and Geometry Gadjah Mada University, Yogyakarta, Indonesia February 17th-28th 2020

Image by Arnaud Chéritat

We have seen in the first lecture that to any lattice $\Lambda \subset \mathbb{C}$ we can associate a complex tori defined as \mathbb{C}/Λ .

Question

When two distinct lattice Λ_1 and Λ_2 give rise to isomorphic complex tori $\mathbb{C}/\Lambda_1\cong\mathbb{C}/\Lambda_2?$

We have seen in the first lecture that to any lattice $\Lambda \subset \mathbb{C}$ we can associate a complex tori defined as \mathbb{C}/Λ .

Question

When two distinct lattice Λ_1 and Λ_2 give rise to isomorphic complex tori $\mathbb{C}/\Lambda_1\cong\mathbb{C}/\Lambda_2?$

Definition

Two lattice Λ_1 and Λ_2 are said to be **homothetic** if there exists $\alpha \in \mathbb{C}$ such that $\alpha \Lambda_1 = \Lambda_2$

We have seen in the first lecture that to any lattice $\Lambda \subset \mathbb{C}$ we can associate a complex tori defined as \mathbb{C}/Λ .

Question

When two distinct lattice Λ_1 and Λ_2 give rise to isomorphic complex tori $\mathbb{C}/\Lambda_1\cong\mathbb{C}/\Lambda_2?$

Definition

Two lattice Λ_1 and Λ_2 are said to be **homothetic** if there exists $\alpha{\in}\mathbb{C}$ such that $\alpha\Lambda_1=\Lambda_2$

If α is such that $\alpha \Lambda_1 \subseteq \Lambda_2$, then we can define a surjective map $\phi_\alpha : \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$, by setting

$$\phi_{\alpha}([z]_{\mathsf{A}_1}) = [\alpha z]_{\mathsf{A}_2}.$$

It can be shown that this is a holomorphic map. Moreover if $\alpha \Lambda_1 = \Lambda_2$ then ϕ_{α} is an isomorphism.

Consider the association

$$\{\alpha \in \mathbb{C} : \alpha \Lambda_1 \subseteq \Lambda_2\} \to \left\{ \frac{\mathbb{C}}{\Lambda_1} \xrightarrow{\phi} \frac{\mathbb{C}}{\Lambda_2} : \phi(0) = 0 \text{ and } \phi \text{ holomorphic} \right\}$$
$$\alpha \mapsto \phi_\alpha$$

Theorem

Let Λ_1 and Λ_2 be two lattices. Then the above association is a bijection. Moreover \mathbb{C}/Λ_1 and \mathbb{C}/Λ_2 are isomorphic if and only if Λ_1 and Λ_2 are homothetic. Let

$$\mathcal{L} = \{ \Lambda \subset \mathbb{C} : \Lambda \text{ is a lattice} \}$$

We have an action of \mathbb{C}^* on $\mathcal L$

$$\begin{array}{c} \mathbb{C}^* \times \mathcal{L} \longrightarrow \mathcal{L} \\ (\alpha, \Lambda) \longmapsto \alpha \Lambda \end{array}$$

Let

 $\mathcal{L} = \{\Lambda \subset \mathbb{C} : \Lambda \text{ is a lattice}\}$

We have an action of \mathbb{C}^* on $\mathcal L$

$$\begin{aligned} \mathbb{C}^* \times \mathcal{L} \longrightarrow \mathcal{L} \\ (\alpha, \Lambda) \longmapsto \alpha \Lambda \end{aligned}$$

Let $\Lambda_0{\in}\mathcal{L}$ the orbit of Λ_0 under \mathbb{C}^* is the set

$$\mathsf{Orb}_{\mathbb{C}^*}(\Lambda_0) = \{\Lambda \in \mathcal{L} : \Lambda = \alpha \Lambda_0\}$$

The set of orbits is usually denoted by \mathcal{L}/\mathbb{C}^* . Since two complex tori are isomorphic if and only if the associates lattices are homothetic we have that there exists a bijection

 $\mathcal{L}/\mathbb{C}^* \longrightarrow \{\text{isomorphisms classes of complex tori}\}$

So we want to understand better what \mathcal{L}/\mathbb{C}^* looks like.

Every lattice is homothetic to a lattice of the form $\mathbb{Z} + \tau \mathbb{Z}$ with $Im(\tau) > 0$.

Every lattice is homothetic to a lattice of the form $\mathbb{Z} + \tau \mathbb{Z}$ with $Im(\tau) > 0$.

Let

$$\mathfrak{h} = \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$$

denote the upper half plane. Then, as consequence of the previous lemma, we have that the map

$$\mathfrak{h} \longrightarrow \mathcal{L}/\mathbb{C}^*$$

 $au \longmapsto [\Lambda_{ au}]$

is surjective.

Every lattice is homothetic to a lattice of the form $\mathbb{Z} + \tau \mathbb{Z}$ with $Im(\tau) > 0$.

Let

$$\mathfrak{h} = \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$$

denote the upper half plane. Then, as consequence of the previous lemma, we have that the map

$$\mathfrak{h} \longrightarrow \mathcal{L}/\mathbb{C}^*$$

 $\tau \longmapsto [\Lambda_{\tau}]$

is surjective. Unfortunately is not injective.

We have to consider another action to actually get a set of representative for the set of orbits. First of all recall that $Mat_{2\times 2}(\mathbb{R})$ acts on \mathbb{C} by fractional linear transformation, which means that given $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we let

$$A \cdot z = rac{az+b}{cz+d}$$

We have to consider another action to actually get a set of representative for the set of orbits. First of all recall that $Mat_{2\times 2}(\mathbb{R})$ acts on \mathfrak{h} by

fractional linear transformation, which means that given $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we let

$$A \cdot z = \frac{az+b}{cz+d}$$

Lemma

If $Im(\tau) \neq 0$, then

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{(ad-bc)}{|cz+d|^2}\operatorname{Im}(z)$$

Let

$$\mathsf{SL}_2(\mathbb{Z}) = \left\{ egin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{Mat}_{2 imes 2}(\mathbb{Z}) : \mathit{ad} - \mathit{bc} = 1
ight\}.$$

 $SL_2(\mathbb{Z})$ is called the modular group and often denote by $\Gamma(1)$. By the above lemma $SL_2(\mathbb{Z})$ act on \mathbb{C} by fractional linear transformation:

$$\mathsf{SL}_2(\mathbb{Z}) \times \mathfrak{h} \longrightarrow \mathfrak{h}$$

 $\left(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau \right) \longmapsto \gamma(\tau) = \frac{a\tau + b}{c\tau + d}$

Let

$$\mathsf{SL}_2(\mathbb{Z}) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathsf{Mat}_{2 imes 2}(\mathbb{Z}) : \mathit{ad} - \mathit{bc} = 1
ight\}.$$

 $SL_2(\mathbb{Z})$ is called the modular group and often denote by $\Gamma(1)$. By the above lemma $SL_2(\mathbb{Z})$ act on \mathbb{C} by fractional linear transformation:

$$\mathsf{SL}_2(\mathbb{Z}) \times \mathfrak{h} \longrightarrow \mathfrak{h}$$

 $\left(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau \right) \longmapsto \gamma(\tau) = \frac{a\tau + b}{c\tau + d}$

Clearly $-I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ acts like the identity. Thus we get an action of the quotient group $\overline{\Gamma(1)}$ on \mathfrak{h}

The lattices Λ_{τ_1} and Λ_{τ_2} , $(\tau_1, \tau_2 \in \mathfrak{h})$, are homothetic if and only if there exist $\gamma \in \Gamma(1)$ such that $\gamma(\tau_1) = \tau_2$.

The lattices Λ_{τ_1} and Λ_{τ_2} , $(\tau_1, \tau_2 \in \mathfrak{h})$, are homothetic if and only if there exist $\gamma \in \Gamma(1)$ such that $\gamma(\tau_1) = \tau_2$.

Thus to understand \mathcal{L}/\mathbb{C}^* we only need to compute a fundamental domain for the action of $\Gamma(1)$ on \mathfrak{h}

Recall that \mathcal{F} is a fundamental domain for the action of the modular group $\Gamma(1)$ if the following condition holds: each orbit intersect \mathcal{F} in exactly one point.

A fundamental domain

Let

$$ilde{\mathcal{F}} = \left\{ au \! \in \! \mathfrak{h} : | au| \geq 1 \, \, \mathsf{and} \, \, - rac{1}{2} \leq \mathsf{Re}(au) \leq rac{1}{2}
ight\}$$

A fundamental domain

Let

$$\tilde{\mathcal{F}} = \left\{ \tau \in \mathfrak{h} : |\tau| \ge 1 \text{ and } -\frac{1}{2} \le \operatorname{Re}(\tau) \le \frac{1}{2} \right\}$$

where
$$\rho = \exp(\frac{2\pi i}{3})$$

Matrices in $\Gamma(1)$

$${\mathcal T} = egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} \qquad {\mathcal S} = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$

Matrices in $\Gamma(1)$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

and their action is given by

$$T(au) = au + 1$$
 $S(au) = -rac{1}{ au}$

Matrices in $\Gamma(1)$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

and their action is given by

$$T(au) = au + 1$$
 $S(au) = -rac{1}{ au}$

Note that $S^2 = I$. Moreover

$$(ST)^3 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}^3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

and

$$(TS)^3 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}^3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

So $(TS)^3 = I$ and $(ST)^3 = I$ in $\overline{\Gamma(1)}$.

Theorem

- (1) Given $\tau \in \mathfrak{h}$ then there exists $\gamma \in \Gamma(1)$ such that $\gamma(\tau) \in \tilde{\mathcal{F}}$
- (2) Given $\tau \in \tilde{\mathcal{F}}$ and $\gamma \in \Gamma(1)$, then $\gamma(\tau) \in \tilde{\mathcal{F}}$ if and only if one of the following situations occur:

(a)
$$\operatorname{Re}(\tau) = \frac{1}{2} \text{ and } \gamma(\tau) = \tau - 1$$

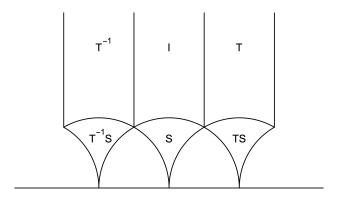
(b) $\operatorname{Re}(\tau) = -\frac{1}{2} \text{ and } \gamma(\tau) = \tau + 1$
(c) $|\tau| = 1 \text{ and } \gamma(\tau) = -\frac{1}{\tau}$

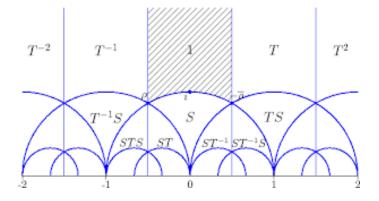
(3) Given $\tau \in \mathfrak{h}$ let

$$\mathsf{Stab}_{\tau} = \left\{ \gamma \in \overline{\mathsf{\Gamma}(1)} : \gamma(\tau) = \tau \right\}.$$

Then for $\tau {\in} \tilde{\mathcal{F}}$ we have

$$\mathsf{Stab}_{\tau} = \begin{cases} ~~& \text{if } \tau = i \\ & \text{if } \tau = \rho = \exp(\frac{2\pi i}{3}) \\ & \text{if } \tau = -\bar{\rho} = \exp(\frac{\pi i}{3}) \\ I & \text{otherwise.} \end{cases}~~$$





Theorem

The group $\overline{\Gamma(1)}$ is generated by T and S.

The fondamental domain for the action of $\overline{\Gamma(1)}$ on \mathfrak{h} .

