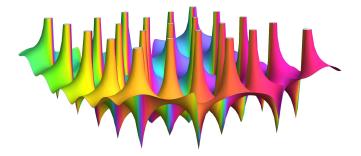
Modular Forms: Background and motivation

Valerio Talamanca (Università Roma Tre & RNTA)



CIMPA research school Group Actions in Arithmetic and Geometry Gadjah Mada University, Yogyakarta, Indonesia February 17th-28th 2020

Definition

A function $f: \Omega \to \mathbb{C}$ is *complex differentiable* at $z_0 \in \Omega$ if and only if

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$$

exists and is finite, in which case is denoted with $f'(z_0)$.

Cauchy-Riemann equations

For a function

 $f:\Omega \rightarrow \mathbb{C}, \quad \Omega \subseteq \mathbb{C} \text{ open}, \ z_0 \in \Omega$

the following statements are equivalent:

(a) f is complex differentiable at z_0 .

(b) f is totally differentiable at z_0 in the sense of real analysis and

$$\frac{\partial u}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0), \qquad \frac{\partial u}{\partial y}(z_0) = -\frac{\partial v}{\partial x}(z_0)$$

where $u = \operatorname{Re}(f)$ and $v = \operatorname{Im}(f)$.

Terminology

A function

$$f:\Omega \to \mathbb{C}, \quad \Omega \subseteq \mathbb{C}, \text{ open }$$

is said to be **holomorphic** in Ω if it is complex differentiable at every point of D.

f is said to be **holomorphic** at $z_0 \in \Omega$ is there exists an open neighborhood $U \subseteq D$ of z_0 such that *f* is holomorphic in *U*.

Terminology

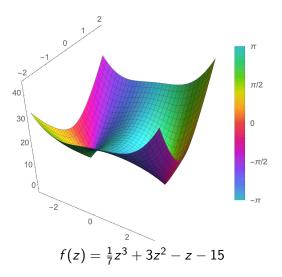
A function

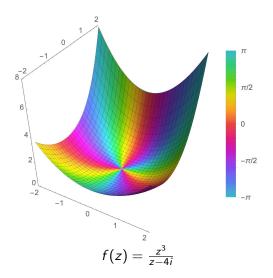
 $f: \Omega \rightarrow \mathbb{C}, \quad \Omega \subseteq \mathbb{C}, \text{ open}$

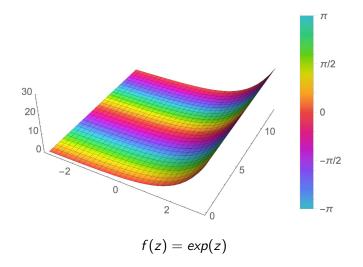
is said to be **holomorphic** in Ω if it is complex differentiable at every point of Ω .

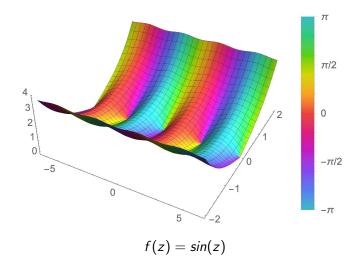
f is said to be **holomorphic** at $z_0 \in \Omega$ is there exists an open neighborhood $U \subseteq \Omega$ of z_0 such that *f* is holomorphic in *U*.

The function $z \mapsto \overline{z}$ is complex differentiable at z = 0 but is not holomorphic at z = 0, because z_0 is the only point where is complex differentiable.









Complex line integrals

Definition

Let $\gamma : [a, b] \to \mathbb{C}$ be a piecewise continuous curve, $f : \Omega \to \mathbb{C}$ be a continuous function, and suppose $\gamma([a, b]) \subseteq \Omega$. Then we define the **line integral of** f along γ as

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Complex line integrals

Definition

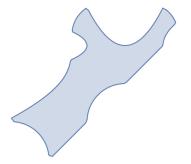
By a **domain** we shall mean an arcwise connected open set $D \subseteq \mathbb{C}$.

Theorem

For a continuous function $f:D\to\mathbb{C},\,D\subseteq\mathbb{C}$ a domain, the following are equivalent

- (a) f has a primitive
- (b) The integral of f along any closed curve in D vanishes
- (c) The integral of f over any curve in D depends only on the beginning and end points of the curve

Domains



simply connected

not simply connected

Cauchy integral formulas

Cauchy Theorem

Let $D \subset \mathbb{C}$ be a simply connected domain, $f : D \to \mathbb{C}$ be an holomorphic function and $\gamma : [a, b] \to \mathbb{C}$ a piecewise continuous closed curve. Then

$$\int_{\gamma} f(z) dz = 0$$

Cauchy integral formulas

We will denote by $U_r(z_0) = \{z \in \mathbb{C} : |z - z_0| < r\}$ the open disk centered a z_0 and by $\overline{U}_r(z_0)$ its closure.

Cauchy Integral Formula

Let $D \subset \mathbb{C}$ be a simply connected domain, $f : D \to \mathbb{C}$ be an holomorphic function in D. Suppose that the closed disk $\overline{U}_r(z_0)$ lies completely within D and let $\gamma : [0, 2\pi] \to \mathbb{C}, \gamma(t) = z_0 + re^{it}$ (so γ goes once around the boundary of $\overline{U}_r(z_0)$ counterclokwise). Then for each point $z \in U_r(z_0)$ we have:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Cauchy integral formulas

Generalized Cauchy Integral Formula

With the assumption and notation of the Cauchy integral formulas we have: Every holomorphic function in D is arbitrarily often complex differentiable, each derivative is again holomorphic. For $n \ge 1$ and all $z \in U_r(z_0)$ we have

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta = 0$$

A function holomorphic on all of ${\mathbb C}$ is called an ${\mbox{entire}}$ function

Exercises

- Every bounded entire functions is costant (Liouville's theorem)
- Each non constant complex polynomial has a root in \mathbb{C} .

Consider a holomorphic function $f : \Omega \to \mathbb{C}$, with Ω open. Suppose that $U_r(z_0) \subset \Omega$. Let $\rho < r$ and let $\gamma : [0, 2\pi] \to \mathbb{C}, \gamma(t) = z_0 + \rho e^{it}$. Then for each $z \in U_\rho(z_0)$, we have

$$f(z) = rac{1}{2\pi i} \int_{\gamma} rac{f(\zeta)}{\zeta - z} d\zeta.$$

Now

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right) = \sum_{n=0}^{\infty} \frac{1}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$

So
$$\frac{1}{\zeta - z} = \sum_{n=0}^{\infty} \frac{1}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$
, it follows that:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\gamma} \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$

So
$$\frac{1}{\zeta - z} = \sum_{n=0}^{\infty} \frac{1}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$
, it follows that:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\gamma} \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \right) (z - z_0)^n$$

So
$$\frac{1}{\zeta - z} = \sum_{n=0}^{\infty} \frac{1}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$
, it follows that:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\gamma} \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \right) (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

So
$$\frac{1}{\zeta - z} = \sum_{n=0}^{\infty} \frac{1}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$
, it follows that:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\gamma} \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \right) (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Thus the power series representation

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

holds for all $z \in U_r(z_0)$

Valerio Talamanca (Roma Tre & RNTA)

Singularities

Given $a \in \mathbb{C}$ we will denote by $U_r(a)$ the punctured disk of radius r centered in a:

$$U_r(a) := \{z \in \mathbb{C} : 0 < |z - a| < r\}.$$

Definition

Let $f : \Omega \to \mathbb{C}$, Ω open, be an holomorphic function. Suppose $a \notin \Omega$ has the property that there exists r > 0 such that $\dot{U}_r(a) \subseteq \Omega$, then a is called **an isolated singularites** of f.

Let $f : \Omega \to \mathbb{C}$, Ω open, be an holomorphic function and *a* an isolated singularity of *f*.

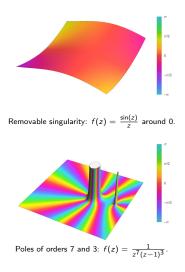
a is called a removable singularity if there exists an holomorphic function *f* : Ω ∪ {a} → C with *f* | Ω = f.

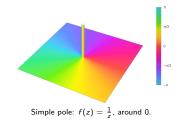
Let $f : \Omega \to \mathbb{C}$, Ω open, be an holomorphic function and *a* an isolated singularity of *f*.

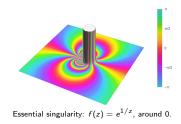
- *a* is called a **removable singularity** if there exists an holomorphic function $\tilde{f} : \Omega \cup \{a\} \to \mathbb{C}$ with $\tilde{f} \mid \Omega = f$.
- a is called a **pole** if there exists an integer m ≥ 1 such that g(z) = (z a)^mf(z) has a removable singularity at a. The smallest integer k with this property is called the **order** of the pole. If k = 1 the pole is called simple.

Let $f : \Omega \to \mathbb{C}$, Ω open, be an holomorphic function and *a* an isolated singularity of *f*.

- *a* is called a **removable singularity** if there exists an holomorphic function $\tilde{f} : \Omega \cup \{a\} \to \mathbb{C}$ with $\tilde{f} \mid \Omega = f$.
- a is called a **pole** if there exists an integer m ≥ 1 such that g(z) = (z a)^mf(z) has a removable singularity at a. The smallest integer k with this property is called the **order** of the pole. If k = 1 the pole is called simple.
- *a* is called an **essential singularity** if *a* is neither removable nor a pole.







Residues

Let $f : \Omega \to \mathbb{C}$, Ω open, be an holomorphic function and *a* pole of order $k \ge 1$ for *f*. Then *f* can be represented in $U_r(a)$ by a Laurent series

$$f(z) = \sum_{n=-k}^{\infty} a_n (z-a)^n$$

where

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}}$$

The coefficient a_{-1} is called the **residue of f at a** and is denoted by $res_a(f)$. Note that if a is not singularity of f, then $res_a(f) = 0$

Definition

Let $\Omega \subseteq \mathbb{C}$ be an open set. A **meromorphic function** on Ω is a holomorphic function f on $\Omega \setminus S$, where S is discrete in Ω and each $s \in S$ is a pole for f.

Given a meromorphic function f on Ω and $a \in \Omega$ we defined $\operatorname{ord}_a(f)$ the order of f at a as follows:

Given a meromorphic function f on Ω and $a \in \Omega$ we defined $\operatorname{ord}_a(f)$ the order of f at a as follows:

• $\operatorname{ord}_a(f) = 0$ if f is holomorphic and non vanishing at a

Given a meromorphic function f on Ω and $a \in \Omega$ we defined $\operatorname{ord}_a(f)$ the order of f at a as follows:

- $\operatorname{ord}_a(f) = 0$ if f is holomorphic and non vanishing at a
- ord_a(f) = k if f vanishes at a and a_k is the first non zero coefficient in the power expansion of f around a.

Given a meromorphic function f on Ω and $a \in \Omega$ we defined $\operatorname{ord}_a(f)$ the order of f at a as follows:

- $\operatorname{ord}_a(f) = 0$ if f is holomorphic and non vanishing at a
- ord_a(f) = k if f vanishes at a and a_k is the first non zero coefficient in the power expansion of f around a.
- $\operatorname{ord}_a(f) = -k$ if f has a pole of order k at a.

Given a meromorphic function f on Ω and $a \in \Omega$ we defined $\operatorname{ord}_a(f)$ the order of f at a as follows:

- $\operatorname{ord}_a(f) = 0$ if f is holomorphic and non vanishing at a
- $\operatorname{ord}_a(f) = k$ if vanishes at a and a_k is the first non zero coefficient in the power expansion of f around a.
- $\operatorname{ord}_a(f) = -k$ if f has a pole of order k at a.

Exercise

Let f be meromorphic in Ω , and $a \in \Omega$. Then

$$\mathsf{res}_{\mathsf{a}}(f'/f) = \mathsf{ord}_{\mathsf{a}}(f)$$

if f is not constantly zero on Ω .

Residues theorem

A closed piecewise smooth curve $\gamma : [a : b] \to \mathbb{C}$ is said to be **simple** if $\gamma(t_1) = \gamma(t_2)$ implies $\{t_1, t_2\} = \{a, b\}$. A piecewise smooth closed simple curve will be called a **contour**. If γ is a contour than γ divides the complex plane in two disconnected parts, one bounded and one unbonded. The bounded one will be called the interior of γ , and will be denoted by I_{γ}

Theorem

Let $D \subseteq \mathbb{C}$ be a simply connected domain, γ a contour in D, f a meromorphic function in D with only finitely many isolated singularities in the interior of γ . Then

$$rac{1}{2\pi i}\int_{\gamma}f(z)dz=\sum_{z\in I_{\gamma}}\mathrm{res}_{z}(f)$$

Computation of residues

Let $D \subset \mathbb{C}$ a domain, *a* a point in *D*, and *f* holomorphic function on $D \setminus \{a\}$, with at most a pole in *a*, and *g* holomorphic in *D*. Then

- If $\operatorname{ord}_a(f) \ge -1$, then $\operatorname{res}_a(f) = \lim_{z \to a} (z a)f(z)$.
- If $\operatorname{ord}_a(f) = -k < -1$, then

$$\operatorname{res}_{a}(f) = \frac{1}{(k-1)!} \lim_{z \to a} \tilde{f}^{(k-1)}(z)$$

where $\tilde{f}(z) = (z - a)^k f(z)$.

• If $\operatorname{ord}_a(f) > 0$ and $\operatorname{ord}_a(g) = 1$, then $\operatorname{res}_a(f/g) = f(a)/g'(a)$.

Periodic functions

A meromorphic function f on C is said to be periodic, with period ω if

$$f(z+\omega)=f(z) \quad \forall z \in \mathbb{C}$$

A meromorphic function f on C is said to be periodic, with period ω if

$$f(z+\omega)=f(z) \quad \forall z \in \mathbb{C}$$

Examples

A meromorphic function f on C is said to be periodic, with period ω if

$$f(z+\omega)=f(z) \quad \forall z \in \mathbb{C}$$

Examples

• $\exp(z + 2k\pi i) = \exp(z)$. So the exponential function is periodic with period $2\pi i$ and all its multiples.

A meromorphic function f on C is said to be periodic, with period ω if

$$f(z+\omega)=f(z) \quad \forall z \in \mathbb{C}$$

Examples

- $\exp(z + 2k\pi i) = \exp(z)$. So the exponential function is periodic with period $2\pi i$ and all its multiples.
- $cos(z + 2k\pi) = cos(z)$. So cos(z) is periodic with period 2π and all its multiples.

A meromorphic function f on C is said to be periodic, with period ω if

$$f(z+\omega)=f(z) \quad \forall z \in \mathbb{C}$$

Examples

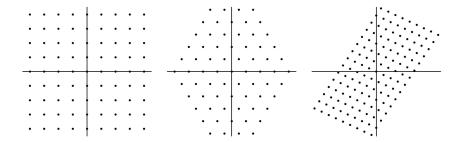
- $\exp(z + 2k\pi i) = \exp(z)$. So the exponential function is periodic with period $2\pi i$ and all its multiples.
- $cos(z + 2k\pi) = cos(z)$. So cos(z) is periodic with period 2π and all its multiples.
- exp(2πi(z + 1)) = exp(z). So exp(2πiz) is periodic with period 1 (and all its multiples)

Exercise

Let f be a meromorphic periodic function. Then one of the following holds:

- *f* is simply periodic, *i.e.* the periods of *f* are of the form $n\omega_0$, $n\in\mathbb{Z}$.
- *f* is doubly periodic, *i.e.* the periods of are of the form n₁ω₁ + n₂ω₂, n₁, n₂∈ℤ, and ω₁ and ω₂ linearly independent over ℝ.

A doubly periodic meromorphic function is called an **elliptic function**. The set of periods of an elliptic function forms a **lattice**, a discrete subgroup of \mathbb{C} whose basis over \mathbb{Z} generates \mathbb{C} over \mathbb{R} .



Lattices in the complex plane

Let Λ be a lattice in \mathbb{C} generated by ω_1 and ω_2 . Given $c \in \mathbb{C}$, the set

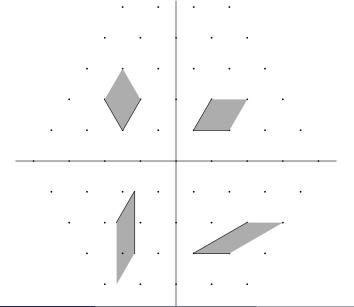
$$\Pi = \{x_1\omega_1 + x_2\omega_2 + c : x_1, x_2 \in \mathbb{R} \text{ and } 0 \le x_1, x_2 < 1\}$$

Is called a **fundamental parallelogram** for Λ and enjoys the following properties:

• If u_1 and u_2 belong to Π , then $u_1 \not\equiv u_2 \mod \Lambda$.

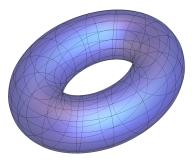
• If $u \in \mathbb{C}$ then there exits a unique $\bar{u} \in \Pi$ such that $u \equiv \bar{u} \mod \Lambda$. (Proof: Exercise)

Fundamental domains



Let $\Lambda \subset \mathbb{C}$ a lattice. The set of doubly periodic meromorphic functions having Λ as period lattices is denoted by $M(\Lambda)$. Note that $M(\Lambda)$, can be interpreted as the set of meromorphic function on the complex torus \mathbb{C}/Λ . As a real surfaces such a complex torus looks like:

Let $\Lambda \subset \mathbb{C}$ a lattice. The set of doubly periodic meromorphic functions having Λ as period lattices is denoted by $M(\Lambda)$. Note that $M(\Lambda)$, can be interpreted as the set of meromorphic function on the complex torus \mathbb{C}/Λ . As a real surfaces a complex torus looks like:



Exercises

- (a) An elliptic function must have at least one pole.
- (b) Let Λ be a lattice and Π a fundamental parallelogram for Λ . Suppose $f, g \in M(\Lambda)$ are such that

$$\operatorname{ord}_a(f) = \operatorname{ord}_a(g)$$
 for all $a \in \Pi$.

Then f/g is constant.

Exercises

Let f be an elliptic function with period lattices $\Lambda.$ Then

•
$$\sum_{a\in\Pi} \operatorname{res}_a(f) = 0$$

- $\sum_{a\in\Pi} \operatorname{ord}_a(f) = 0$
- $\sum_{a\in\Pi} \operatorname{ord}_a(f)a \equiv 0 \mod \Lambda$

• An elliptic function cannot have only a simple pole in a fundamental domain.

(Hint: use the Residues theorem) You will need to use the following fact: If f(a) = f(b), and both f and f' do not vanish the line joining a and b, then $\frac{1}{2\pi i} \int_{a}^{b} \frac{f'(z)}{f(z)} dz \in \mathbb{Z}$.

Let $\Lambda \subset \mathbb{C}$ be a lattice. Consider the following series of meromorphic function:

$$\frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$

It can be proven that the series converges normally in any disk $U_r(0)$ and hence defines a meromorphic function on all of \mathbb{C} . The function it converges to is called the **Weiestrass** \wp -function and is denoted by:

$$\wp_{\Lambda}(z) = rac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight)$$

By construction $\wp_{\Lambda}(z)$ is an even function, has a double pole in the origin and in every point of the lattice Λ and it belongs to $M(\Lambda)$.

The derivativative of $\wp_{\Lambda}(z)$ is also an elliptic function for the lattice Λ .

$$\wp'_{\Lambda}(z) = -2\sum_{\omega\in\Lambda} \frac{1}{(z-\omega)^3}$$

and it has a triple pole at the points of the lattice Λ and no other singularities.

Exercise (Structure theorem for $M(\Lambda)$) Let $\Lambda \in \mathbb{C}$ be a lattice. Every f(z) can be written in the following form

$$f(z) = R_1(\wp_{\Lambda}(z)) + \wp_{\Lambda}'(z)R_2(\wp_{\Lambda}(z))$$

where R_1 and R_2 rational functions.

Eisenstein series

Let $\Lambda \subset \mathbb{C}$ be a lattice. Given $n \geq 3$ the series

$${\it G}_n(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-n}$$

converges absolutely and it gives the Laurent series for both $\wp_{\Lambda}(z)$ and $\wp'_{\Lambda}(z)$, namely

$$\wp_{\Lambda}(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} (2n+1)G_{2n+2}(\Lambda)z^{2n}$$

and

$$\wp'_{\Lambda}(z) = -\frac{2}{z^3} + \sum_{n=1}^{\infty} 2n(2n+1)G_{2n+2}(\Lambda)z^{2n-1}$$

Theorem (Algebraic differential equation for \wp_{Λ}) Set $g_2(\Lambda) = 60 G_4(\Lambda)$ and $g_4(\Lambda) = 160 G_6(\Lambda)$. Then $\wp'_{\Lambda}(z)^2 = 4 \wp_{\Lambda}(z)^3 - g_2(\Lambda) \wp_{\Lambda}(z) - g_3(\Lambda)$

Elliptic curves

Thus the image of \mathbb{C}/Λ via the function

$$\mathbb{C}/\Lambda \longrightarrow \mathbb{P}^{2}(\mathbb{C})$$
$$[z]_{\Lambda} \longmapsto [\wp_{\Lambda}(z) : \wp_{\Lambda}'(z) : 1]$$

admits a description as a cubic curve in the complex projective plane of the form $y^2 = x^3 + Ax + B$. Such curves are elliptic curves. The real locus of such a curve looks like:

